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Abstract 
Immediately after discovering superconductivity in Pb, H. Kamerlingh Onnes tried 

to wind a Pb wire to make a magnet and obtain very high magnetic fields. He wanted 
to address an application with his discovery, aiming at building dissipation-free 
electrical motors. He rapidly saw, however, that superconductivity disappeared 
as soon as the current in the solenoid created a field of a few tens of Gauss. 
His disappointment lead him to center efforts in a more fundamental study of 
superconductivity. But his observation already pointed out a relevant fundamental 
aspect of superconductivity, developed by Ginzburg 40 years later, namely that 
superconductivity and magnetism are antagonistic phenomena. 

This antagonism provides an interesting playground in modern superconductivity, 
as there are many situations where it might turn into a positive interaction, 
often connected with an increase in the critical temperature. In that sense, 
Kamerlingh Onnes’ disappointment was leading us to high critical temperature 
superconductivity! In this Ph.D. thesis I have explored this issue using scanning 
tunneling microscopy (STM). STM provides an atomic view of the superconducting 
properties. I chose to study BaFe2(As1−xPx)2, a system where superconductivity 
has maximum Tc exactly at the P concentration where magnetism disappears (at 
x =0.3), and isolated magnetic impurities in 2H-NbSe2−xSx. In the course of my 
studies, I also explored the Josephson effect at atomic level and found features that 
are completely new. 

In the iron based pnictide superconductors, I have analyzed a sample exactly at the 
quantum critical point where magnetism disappears, BaFe2(As0.7P0.3)2, and another 
sample in the paramagnetic state, BaFe2(As0.56P0.44)2. Contrary to other doped 
superconductors, here the As by P substitution does not influence significantly the 
sample quality. I have observed the As/P atomic lattice and for the first time the 
vortex lattice in both samples. In BaFe2(As0.7P0.3)2, I find a strong tendency to form 
a well ordered square vortex lattice locked to the atomic lattice, connected to a strong 
superconducting gap anisotropy. These effects are absent in BaFe2(As0.56P0.44)2, 
suggesting that they are caused by magnetism. Furthermore, I have measured the 
band structure using quasiparticle interference, finding a strong superconducting 
gap anisotropy in BaFe2(As0.7P0.3)2. A careful analysis of the scattering patterns 
allows us to extract information about the gap opening and the band structure. 
When analyzing the magnetic field dependence of the vortex core size, I found an 
increase and a subsequent decrease of the vortex core size at BaFe2(As0.7P0.3)2. Such 
a behavior is absent in BaFe2(As0.56P0.44)2 and is contrary to the expectation for a 
usual superconductor, which consists of a magnetic field induced decrease in the 
vortex core size. The peculiar behavior is related to the properties of isolated vortex 
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cores in BaFe2(As0.7P0.3)2, which are, at low fields, in the so-called quantum limit, 
where the core level spacing exceeds the thermal energy. This is an interesting 
consequence of the diverging mass at the quantum critical point. 

I furthermore analyzed the transition metal dichalcogenides 2H-NbSe2 and 
2H-NbSe1.8S0.2 with Fe magnetic impurities. I show that we can obtain 
gapless superconductivity with a very small amount of magnetic impurities in 
2H-NbSe1.8S0.2. I carefully analyzed scattering patterns of the in-gap states induced 
by the Fe magnetic impurities. I found oscillatory patterns due to the Fe impurities 
that are associated to portions of the band structure with an increased density 
of states. The oscillatory patterns are absent in pure 2H-NbSe2, suggesting that 
the S concentration reduces the dimensionality, increasing the scattering signal 
due to a stronger 2D-character. When there are many magnetic impurities, these 
overlap and lead to gapless superconductivity. Moreover, I studied in detail the 
interaction between dilute states from Fe impurities and from quantized states 
inside vortex cores. I found that the electron-hole asymmetric character of Fe 
impurity states is transferred to the much larger vortex core states through exchange 
interaction, causing vortex cores to become axially asymmetric in presence of 
magnetic impurities. 

I have also discovered an unexpected low frequency time dependent AC Josephson 
signal. I have characterized the effect carefully and shown that it is a novel 
feedback effect acting on the Josephson junction. The feedback provides a significant 
enhancement of the Josephson coupling observed in the experiment, improving the 
sensitivity of Scanning Josephson Spectroscopy. It leads to an interesting bistable 
behavior, in which the junction switches between the usual AC Josephson effect, 
with a non-zero voltage, and the zero voltage state with a DC Josephson current. 
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Resumen 

Inmediatamente tras descubrir superconductividad en el Pb, H. Kammerlingh 
Onnes intentó crear una bobina con un cable de Pb para hacer un electroimán 
y obtener campos magnéticos muy altos. Quería encontrar una aplicación para 
su descubrimiento y se propuso construir motores eléctricos sin disipación. No 
obstante, no tardó en ver que la superconductividad desaparecía tan pronto como 
la corriente en el solenoide creaba un campo magnético de unas pocas decenas de 
Gauss. La decepción consiguiente le llevó a estudiar los aspectos más fundamentales 
de la superconductividad. Su observación, en cualquier caso, ayudó a señalar uno 
de los puntos más relevantes de la superconductividad, que sería 40 años después 
desarrollado por Ginzburg, y es que la superconductividad y el magnetismo son 
fenómenos antagónicos. 

Este antagonismo propicia un interesante escenario en la superconductividad 
moderna, ya que existen numerosas situaciones donde puede tornarse en una 
interacción atractiva, normalmente asociada a un incremento de la temperatura 
crítica. En ese sentido, ¡la decepción de H. Kammerlingh Onnes nos abrió el camino 
hacia la superconductividad de alta temperatura crítica! En esta tesis doctoral 
he explorado este tema utilizando un microscopio túnel de barrido (STM, por 
sus siglas en inglés). El STM proporciona una visión atómica de las propiedades 
superconductoras. He escogido estudiar el sistema BaFe2(As1−xPx)2, el cual alcanza 
su máxima Tc precisamente en la concentración de P donde el magnetismo 
desaparece (a x =0.3), y también impurezas magnéticas aisladas en el sistema 
2H-NbSe2−xSx. En el curso de mi investigación, también he explorado el efecto 
Josephson a escala atómica, encontrando fenómenos interesantes y completamente 
novedosos. 

En los pnicturos superconductores basados en hierro he analizado una muestra 
situada exactamente en el punto crítico cuántico en el que el magnetismo desaparece, 
BaFe2(As0.7P0.3)2, y otra en la fase paramagnética, BaFe2(As0.56P0.44)2. Al contrario 
que en otros superconductores dopados, aquí la sustitución de As por P no influye 
significativamente en la calidad de las muestras. He observado la red atómica 
de As/P y, por primera vez, la red de vórtices en ambas muestras. En el 
BaFe2(As0.7P0.3)2, he encontrado una fuerte tendencia a formar una red de vórtices 
cuadrada alineada con los ejes de la red atómica, asociada a una fuerte anisotropía en 
el gap superconductor. Estos efectos están ausentes BaFe2(As0.56P0.44)2, sugiriendo 
que podrían tener su origen en la proximidad con el orden antiferromagnético. 
Además, he medido la estructura de bandas utilizando patrones de dispersión de 
cuasipartículas, confirmando la fuerte anisotropía del gap en BaFe2(As0.7P0.3)2. Un 
estudio detallado de los patrones de dispersión electrónica nos ha permitido obtener 
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información acerca de la apertura del gap superconductor y la estructura de bandas. 
He observado en BaFe2(As0.7P0.3)2 un inesperado aumento y posterior reducción 
del tamaño del núcleo de los vórtices. Este comportamiento no se observa en 
BaFe2(As0.56P0.44)2 y es contrario a lo esperado para un superconductor normal, 
donde un campo magnético induce una reducción del tamaño del núcleo. Este 
peculiar fenómeno está relacionado con las propiedades del núcleo de vórtices aislados 
en BaFe2(As0.7P0.3)2, los cuales a bajos campos están en el llamado límite cuántico, 
donde el espaciado entre niveles excede la energía térmica. Esto es una interesante 
consecuencia de la divergencia de la masa efectiva en el punto crítico cuántico. 

También he estudiado los dicalcogenuros de metales de transición 2H-NbSe2 y 
2H-NbSe1.8S0.2 con impurezas magnéticas de Fe. He demostrado que se puede 
obtener superconductividad sin gap con una muy pequeña cantidad de impurezas 
en 2H-NbSe1.8S0.2. He analizado detenidamente los patrones de dispersión de 
los estados dentro del gap inducidos por las impurezas magnéticas, encontrando 
patrones oscilatorios debidos a las impurezas de Fe asociados con porciones de la 
estructura de bandas con una mayor densidad de estados. Estos patrones oscilatorios 
no aparecen en 2H-NbSe2 puro, lo que sugiere que la concentración de S reduce 
la dimensionalidad, incrementando la señal de dispersión electrónica debido a un 
mayor carácter bidimensional. Cuando hay muchas impurezas magnéticas, éstas 
solapan y producen superconductividad sin gap. Además, he estudiado en detalle la 
interacción entre estados localizados asociados a las impurezas magnéticas cuando 
están muy diluidas y los estados cuantizados dentro de los núcleos de los vórtices. He 
observado que la asimetría electrón-hueco característica de los estados localizados 
en la impurezas de Fe se transfiere a los estados del núcleo de los vórtices a través 
de intereacción de canje, provocando dicho núcleo se vuelva axialmente asimétrico 
en presencia de impurezas magnéticas. 

Asimismo, he descubierto una inesperada señal Josephson alterna de baja 
frecuencia. He caracterizado este efecto y he mostrado que se trata de un novedoso 
efecto de retroalimentación que actúa sobre la unión. Dicha retroalimentación causa 
un aumento significativo del acoplamiento Josephson observado en el experimento, 
mejorando la sensibilidad de la espectroscopía Josephson de barrido, y conduce a un 
comportamiento biestable muy interesante, en el cual la unión salta entre el efecto 
Josephson alterno con un voltaje asociado y una corriente Josephson continua a 
voltaje cero. 
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1 | Introduction 

1.1 Superconductivity 

1.1.1 Discovery and brief history 

After the first liquefaction of liquid helium in 1908, H. Kammerling-Onnes at the 
Leiden Laboratory was studying in 1911 the electrical resistivity of metals when 
decreasing temperature. He discovered an unexpected drop to almost zero resistance 
for mercury near 4 K [1] (see Fig. 1.1). This drop was reproducible in several 
coolings and below that special temperature, the value of the resistivity was always 
unmeasurably small. Mercury was the first, but soon this behavior was also observed 
in many other materials, and the term superconductivity was coined. 

a b

Figure 1.1: (a) H. Kammerlingh-Onnes (bottom right) and his team at Leiden 
Laboratory in 1914. (b) First depiction of the superconducting transition of mercury, 
extracted from Ref. [1]. 

Further experiments showed that, in addition to the temperature below which 
superconductivity appeared (the critical temperature Tc), applying a magnetic field 
lead to the destruction of superconductivity at the critical field Hc. We can write 
the difference in free energy between the normal and the superconducting state in 
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terms of Hc as: 

1 
fN − fS = 2µ0H

2 (1.1)c 

with fN and fS being the free energy density of the normal and superconducting 
state, respectively. 

Meissner and Ochsenfeld studied in detail the magnetic field behavior of 
superconductors [2]. They found that superconductors completely expel the 
magnetic field. A hypothetical system in which zero resistance appears below 
a certain temperature would avoid, according to Lenz law, any variation of the 
magnetic field with time. Thus, if such a sample is at zero field and one applies a 
magnetic field, the field is expelled. But if one cools such a sample in a magnetic 
field, nothing happens. In a superconductor, the field is expelled in any case. This is 
usually referred to as the Meissner effect, which is schematically depicted in Fig. 1.2. 

a b SuperconductorPerfect conductor

T > Tc T > Tc T < TcT < Tc

Figure 1.2: Comparison of a field cooling process in a perfect conductor (a) 
and a superconductor (b). Black arrows represent the magnetic flux lines. The 
superconductor acts as a perfect diamagnet in the Meissner state. 

1.1.2 London and Ginzburg-Landau theories 

The brothers Heinz and Fritz London proposed in 1935 (only two years after 
Meissner and Ochsenfeld’s results) one of the first phenomenological theories to 
explain superconductivity [3]. The main idea is that external magnetic fields can 
penetrate inside the superconducting sample a certain characterisic length, called 
London penetration depth λL. These external fields however decay exponentially 
with distance due to screening by flowing supercurrents, explaining the Meissner 
effect. The theory can be summarized in the so called London equations: 

∂JsE = 
me 

2 
(1.2) 

nse ∂t 

− 
meH = ∇× Js (1.3)2nse

2
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where me is the electron mass, e is the elementary charge and ns the density of 
superconducting electrons. Through the combination of the second London equation 
and the second Maxwell equation ∇×H = µ0Js, we can extract the solution for the 
exponentially decaying magnetic field inside a superconductor, from which we can 
find the London penetration depth: 

√ 
me (1.4)λL = 2µ0nse

A few years later, in 1950, V. Ginzburg and L. Landau worked out a 
phenomenological quantum model to superconductivity, generally known as the 
Ginzburg-Landau (GL) theory, based in Landau’s study of the thermodynamic 
properties of phase transitions [4]. They performed a power expansion of the 
superconducting state’s free energy in terms of a small “order parameter”, related 
to the superconducting carrier density �Ψ(r)�2 = ns, which is zero in the normal 
state and increases continuously in the superconducting state below the critical 
temperature [5]. According to this framework, the free energy density fs of a 
superconductor can be written as: 

1 2 + 
β 4 + 

1 2fs = ∫ dr (∇×A)2 − (∇×A)H + α�Ψ� �Ψ� �(ih̵∇+ esA)Ψ� (1.5)2µ0 2 2ms 

with H the magnetic field, A the vector potential, es and ms respectively the 
charge and mass of the superconducting carriers and α and β material-dependent 
constants. The so called GL equations can be obtained by minimizing fs with respect 
to A and Ψ: 

2Ψ + 
1 

(i̵ A)2Ψ =αΨ + β�Ψ� h∇+ es 0 (1.6)2ms 

2hes s
−
i̵

(Ψ∗∇Ψ −Ψ∇Ψ∗) − 
e

�Ψ�2A = 
−∇2A 

= J (1.7)2ms msc µ0 

These two equations describe the behaviour and coexistence of the normal and 
the superconducting states in an external magnetic field. The spatial variation of 
the magnetic field H(r) and the order parameter Ψ(r) is expressed in terms of two 
characteristic lengths: the penetration depth λ and the coherence length ξ. The 
coherence length ξ is the characteristic distance for spatial variations of Ψ and the 
penetration depth λ for spatial variations of H. They both have a temperature 
dependence near Tc of the type: (λ, ξ) ∝(Tc-T)− 1 The dimensionless quotient 2 . 
between the two quantities is usually called the Ginzburg-Landau parameter κ = λ/ξ. 
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Figure 1.3: Schematic diagram of the different behavior of Ψ, λ and ξ in a type I 
(a) and type II (b) superconductor. We depict the interface between the exterior, 
where a magnetic field is applied, and the interior of a superconducting sample in the 
simplest one-dimensional case. In type I superconductors, the magnetic penetration 
depth is shorter than the superconducting coherence length, and vice versa for type 
II. 

The superconductors studied in this Ph.D. are type II, which have ξ<λ (Fig. 1.3) 
and allow for the penetration of the magnetic field in the form of flux tubes called 
vortices (Fig. 1.4). Each carries exactly one flux quantum Φ0 = h/2e = 2.07 × 10−15 

T⋅m2. 
The value of the critical field for type I superconductors in GL theory is: 

Φ0
Hc = √ (1.8)

8πλξ 

For type II superconductors, the values for the two critical fields are: 

Φ0
Hc1 = ln κ (1.9)4πλ2 

Φ0
Hc2 = (1.10)2πξ2 
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Figure 1.4: Temperature-magnetic field phase diagrams of type I (a) and type II 
(b) superconductors. Both have, below a certain critical field, a Meissner state in 
which all magnetic field is screened. Above this critical field, type I superconductors 
transit into the normal state. Type II superconductors however have an intermediate 
phase between the Meissner and the normal states, called the vortex phase, where 
magnetic field is able to penetrate the sample through small tubes of quantized flux, 
called vortices. 

1.1.3 BCS theory 

L. N. Cooper proved [6] that the Fermi sea is unstable to an arbitrarily small 
attractive potential, which if present would lead to the formation of bound states 
of electron pairs with opposite spin and momenta, named Cooper pairs. Bardeen, 
Cooper and Schrieffer then associated this attractive potential to the creation of 
Cooper pairs through a retarded interaction (Fig. 1.5). Subsequently, it was shown 
that Cooper pairs can be, in principle, obtained through magnetic interactions and 
even through purely electronic interactions [7, 8]. 

In the BCS formalism, the dispersion relation of the excited states Ek in a 
superconducting ground state is given by: 

√ 

Ek = Δ2 + εk 
2 (1.11) 

where εk = (h̵2k2/2m) − EF is the kinetic energy with respect to the Fermi level 
and Δ is a constant named superconducting gap, which is given by: 

h̵ωc − V 
NFΔ = 1 

hωe (1.12) 
sinh ( )

≈ 2̵
NF V 

with ω the electron frequency, NF the density of states at the Fermi level and V the 
electron-phonon interaction. The gap in BCS is related to the critical temperature 
Tc in K through: 
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Figure 1.5: Retarded phonon-mediated attractive interaction between electrons in 
the BCS theory. (a) An electron with a certain moment k will attract the lattice 
ions towards it and deform the lattice (i.e. excite a phonon) as it travels through it. 
(b) Another electron with opposite momentum and spin is attracted due to the local 
accumulation of positive charge. (c) Schematic representation of the electron-phonon 
interaction, between pairs of electrons with k1 ≈ kF and phonons of wavevector q. 

Δ 
= 
π 

≈ 1.76 (1.13)
γEkBTc e

with γE ≈0.577 the Euler constant. As a rule of thumb, Δ ≈0.152Tc when Tc is 
expressed in K and Δ in meV. From the dispersion relation in Equation 1.11 we 
obtain the BCS density of states (DOS): 

Ns(E)
= { 

0 if �E� < Δ (1.14)E
N0 

√ if �E� > Δ 
E2−Δ2 

where Ns is the superconducting density of states and N0 the density of states of 
the normal state at the Fermi level. The superconducting gap is maximum at zero 
temperature and decreases in value with temperature, until it completely disappears 
at the critical temperature. The behaviour of Δ is summarized in Fig. 1.6. 
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Figure 1.6: (a) Schematic representation of the superconducting density of states 
(orange). The normal density of states is shown as a red line. The superconducting 
gap Δ is highlighted by the green arrow. (b) Temperature dependence of the 
superconducting gap. 

1.1.4 Multiband and anisotropic superconductivity 

BCS theory starts in its simplest version with a fully isotropic, single band Fermi 
surface with a parabollic dispersion relation. Of course, single crystals of most 
elements and compounds have more complex band structures. BCS theory can be 
equally applied in those cases, with a gap which opens at the Fermi level and a 
density of states which is similar to the BCS expression. 

As shown by Suhl, systems with two bands crossing the Fermi level can eventually 
present different sizes for the superconducting gap in each band [9]. A simplified 
approach using two gaps describes well many different compounds. It is assumed that 
the electron-phonon coupling is different in different portions of the Fermi surface. 
The differences are often well taken into account assuming that there are two effective 
gap values, appearing as two peaks in the density of states [10, 11]. There is of 
course just one critical temperature. When electronic interactions between different 
portions of the Fermi surface are weak, the two peak structure is better developed 
in the density of states. When interactions are strong, only a single smeared peak 
is measured in the density of states [12]. 

A simple method to take into account complex superconducting band structures 
is to assume a continuous distribution of values of the superconducting gap as: 

DOS(E)∝∑ 
i 

are the relative weights of each gap Δi, obtained from each transfer 

αiRe 
⎛

⎝

√


E
 

E2 −Δ2 
i 

⎞

⎠

(1.15)
 

where αi 

matrix element [13, 14, 15]. 
One particular case of superconducting gap changes is often discussed in literature 

in terms of gap nodes. We can schematically show the value of the gap in reciprocal 
space as in Fig. 1.7(a) for a single band s-wave superconductor and a spherical 
Fermi surface. In presence of some anisotropy, the gap may change along one or 
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more directions, sometimes almost vanishing (Fig. 1.7(b)). When the gap becomes 
exactly zero along such directions, through a change in the phase of the Cooper 
pair wavefunctions (Fig. 1.7(c)), we speak about symmetry-imposed nodes in the 
superconducting gap. The example shown in Fig. 1.7(c) corresponds to d-wave 
superconductivity. 

kF

Fermi surface kx

ky

Δ

a

kx

ky
b

kx

ky
c

+

+

- -

Node

Isotropic Anisotropic nodeless Anisotropic nodal

Figure 1.7: We show as a blue surface the size of the superconducting gap in a 
single band superconductor in reciprocal space. In (a) we represent an isotropic, 
s-wave superconducting gap. In (b) we represent a nodeless anisotropic s-wave 
superconducting gap. In (c) we represent a d-wave superconducting gap. Note that 
the phase of the Cooper pair wavefunctions changes sign through a node. 

1.2 Superconductors and magnetic interactions 

1.2.1 Orbital interactions: vortices 

The interaction between Cooper pairs and the applied magnetic field can be related 
to the Lorentz force [16]. The rotating Cooper pairs order in a vortex lattice made 
of flux tubes, which carry supercurrents at a length of order of λ. At the center of 
each vortex, the Cooper pair wavefunction vanishes on a distance of order of ξ. We 
schematically represent the length scales in a vortex in Fig. 1.8(a) and the vortex 
lattice in Fig. 1.8(b). 

The force between two neighbouring vortices at a distance of the order of λ is 
always repulsive: 

K0a0
F = ( 

Φ0 
)

2 

(1.16)2λ 2πλ

where a0 is the intervortex distance, λ the penetration depth, Φ0 the magnetic flux 
quantum and K0 is the Hankel function of order zero. A. Abrikosov predicted in 1957 
[17] that vortices would arrange in a lattice, and a triangular lattice with hexagonal 
symmetry (see Fig. 1.8(b)) was identified in most of the first measurements. More 
recent research on some very anisotropic tetragonal materials has shown that under 
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certain conditions, a square lattice might also form [18, 19, 20, 21]. The intervortex 
distance is a function of the applied magnetic field: 

1
2

a0 (B) (
Φ0 

B 

1
2

1
4

◻ )
=
 (1.17)
 

1
2

(
4
 
3

)
 (

Φ0 

B 
)
 ≈ 1.075 (

Φ0 

B 

the intervortex distance for the square lattice and a◻with a0 

a
L0 (B) =
 )
 (1.18)
 

L
0 for the hexagonal
 

lattice.
 

|Ψ|2(r)

|J|(r)

H(r)

r

Hext
Δ

J

0

ξ

λ

a0

a b

Hext

Figure 1.8: (a) Schematic representation of the variation of the square of the Cooper 
pair function (yellow), the magnetic field (purple) and the supercurrents (red) around 
an isolated vortex core. (b) Under a magnetic field Hc1 < Hext < Hc2, a type II 
superconductor will let individual magnetic flux quanta penetrate its volume as tubes 
of normal state surrounded by supercurrents, called vortices. The vortices on the 
sample will appear as disks and will most likely arrange in a trangular lattice, called 
Abrikosov lattice, due to the repulsive interactions between neighboring vortices. 

The first observation of the vortex lattice was obtained in 1967 by Essmann 
and Träuble [22] in a superconducting Pb sample, through a technique known as 
Bitter magnetic decoration. Small magnetic particles were spread over the sample 
and a low magnetic field was applied perpendicular to the surface. The particles 
concentrated then at the points where the field value was highest, i.e. over the vortex 
cores, revealing its spatial distribution [23]. As the magnetic penetration depth is 
large, vortices need to be very far apart to obtain images of isolated vortices using 
this technique. Thus, often, magnetic decoration is limited to low magnetic fields. 
Neutron scattering is also used to observe the magnetic pattern of the vortex lattice 
at all magnetic fields. 

Using a STM, as we will show below, we can measure the spatial variation of the 
superconducting density of states. This is related to the much smaller coherence 
length ξ. Thus, we can use STM to view the vortex lattice at high magnetic fields 
[24]. 
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1.2.2 CdGM states in vortex cores 

Caroli, de Gennes and Matricon predicted in 1964 [25] that the spatially varying 
pair potential inside a vortex core can lead to the formation of localized Andreev 
bound states, which became known as Caroli-de Gennes-Matricon states, or CdGM 
states for short. The energy levels of CdGM states are quantized, with a level 
spacing of δ ≈ Δ2/EF , with Δ the superconducting gap and EF the Fermi energy. 
Hess et al. found a peak in the density of states at the vortex cores of 2H-NbSe2 

[24, 26, 27], which he adscribed as due to many CdGM states at low energies. 
Subsequent theoretical work [28, 29] showed that CdGM states can indeed produce 
a peak in the density of states at the Fermi level. Detailed calculations [30, 29] 
showed that some features observed by Hess, such as the splitting of the peak and 
its spatial anisotropy, could be associated to the anisotropy of the superconducting 
properties of 2H-NbSe2. A comparison between results in 2H-NbS2 and 2H-NbSe2 

showed that these anisotropic properties are related to the charge density wave of 
2H-NbSe2, which is absent in 2H-NbS2 [14]. 

15 nm

a b c

Figure 1.9: (a) Adapted from Ref. [31]. Schematic representation of the variation 
of the pair potential (yellow) and the energy level spacing of the CdGM states inside 
the core. (b) Extracted from Ref. [26]. Conductance curves from the center of the a 
vortex core (top) to the outside (bottom) in a 2H-NbSe2 sample. (c) Extracted from 
Ref. [29]. Density of states as a function of the energy and the radius with respect 
to the center of a vortex core. Notice that the strong asymmetry of the density of 
states is not observed in the experiments. The calculations are made in the so-called 
quantum limit, where δ >>kBT, which does not apply for 2H-NbSe2. In 2H-NbSe2 

instead, the accumulation of low energy CdGM states leads to the peak observed in 
(b) [32]. 

1.2.3 Vortex core size 

The shape of the superconducting density of states around a vortex core depends on 
several aspects, such as the shape of the superconducting gap in reciprocal space, the 
normal state density of states and the distance to neighboring vortices. The latter 
very strongly changes with magnetic field. It was shown by Kogan and Zhelezina [33] 
that the shape of the superconducting density of states should considerably change 
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with the magnetic field. In particular, the slope of the Cooper pair wavefunction 
should decrease when decreasing the magnetic field. The slope of the Cooper pair 
wavefunction has been taken as a measure of the vortex core size. Thus, the 
vortex core size increases with decreasing magnetic field. According to Kogan and √
Zhelezina, this occurs as 1/ H in clean superconductors up to the critical field 
Hc2 (see Equation 1.19). Superconductors with a small mean free path (i.e. in the 
dirty limit) have a smeared density of states whose spatial shape is magnetic field 
independent [33]. 

√ 
Φ0

ξ(H) = (1.19)2πH 

a b

c d

Figure 1.10: Adapted from Refs. [31, 34]. (a) Experimental data and model fit for 
the conductance in the vortex cores of β-Bi2Pd. (b) Core size extracted from the fit 
as a function of the magnetic field. (c) and (d) present the experimental data, model 
fit (c) and core sizes (d) for the conductance in the vortex cores of 2H-NbSe1.8S0.2. 
The dashed line in (b) and (d) is the expected 1/

√ 
H dependence in the clean limit. 

We can see such a the decrease in β-Bi2Pd (b) but not in 2H-NbSe1.8S0.2. 

The model by Kogan is very useful to analyze images of the vortex lattice taken 
with the STM. The model is based on the de Gennes formula for the relation between 
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the density of states and the size of the superconducting gap:
 

N(r) �Δ(r)�2 

= 1 − (1.20)
N0 Δ2

0 

where N0 is the normal state DOS and Δ0 the maximum value of the 
superconducting gap at zero temperature. Regarding the spatial variation of the 
gap, the model follows the dependence described in Refs. [35] and [36]. According 
to it, the variation of the normalized conductance σ in a vortex core is: 

σ(ρ, η) = 1 − 
ρ2(1 + η2) exp [

η2(1 − ρ2)
] (1.21)

ρ2 + η2 1 + η2 

where ρ = r/a is the normalized vortex radial distance and η = C/a is the 
normalized core size, with 0 < (ρ, η) < 1. The normalization distance a is the vortex 
radius, defined as a circular approximation to the hexagonal Wigner-Seitz unit cell 
of the hexagonal vortex lattice such that 

√ 
Φ0 L a = ≈ 0.525 a0 (1.22)
πH 

This model has been extensively tested in different samples [34, 37, 38]. Fig. 1.10 
(a,b) shows the application of this model to vortex cores in the clean limit in β-Bi2Pd 
and Fig. 1.10 (c,d) shows the dirty limit in 2H-NbSe1.8S0.2. 

1.2.4 Exchange interaction 

Matthias et al. [39, 40, 41] discovered that the Tc of a La sample dropped 
significantly when small amounts of magnetic Gd impurities were added. Beyond 
1% Gd, superconductivity was completely suppressed and a ferromagnetic transition 
rised. As shown in Fig. 1.11(a), they associated the observed decrease in Tc to 
the exchange interaction between the magnetic Gd ions and the superconducting 
La. Abrikosov and Gor’kov studied the influence of magnetic impurities (and 
other pair breaking sources) in the superconducting density of states of disordered 
superconductors [42]. They found that the energy range with a zero density of 
states decreases with increasing pair breaking strength. They also found that there 
is a small parameter range in the pair breaking strength where the superconducting 
density of states becomes completely gapless [43, 44]. This small parameter range 
occurs very close to the full destruction of superconductivity by magnetic pair 
breaking. 

Measurements in thin films of Pb and In show indeed that there is a range with 
a non-zero density of states at the Fermi level [42]. 
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Figure 1.11: (a) Adapted from Ref. [41]. Superconducting (red) and ferromagnetic 
(green) transition temperatures in a La sample doped with magnetic impurities 
of Gd. Above 1% content in Gd, superconductivity in the alloy vanishes. (b) 
Adapted from Ref. [45]. Following Abrikosov and Gor’kov (AG) theory, we plot 
the density of states when increasing the pair breaking parameter α. Note that the 
superconducting gap smears when increasing α and disappears above α=1. We 
show in the inset, also adapted from Ref. [45], the dependence of Tc and the 
superconducting gap Δ with the impurity concentration n. We observe that beyond 
a certain value n0 < ncr, the superconducting gap vanishes yet Tc is nonzero, hence 
the mentioned gapless superconducting regime, here shadowed in orange. 

1.2.5 YSR bound states 

A few years after the works of Matthias [39, 40, 41], Yu, Shiba and Rusinov showed 
that an isolated magnetic impurity in a superconductor produces states, often 
inside the superconducting gap, in the vicinity of the impurity [46, 47, 48], namely 
the Yu-Shiba-Rusinov states, or YSR for short. This means that the exchange 
interaction between magnetic moments and Cooper pairs modifies considerably the 
superconducting state [49]. In the most simple treatment we consider a single 
parabollic band and s-wave superconductivity. We can write the energy at which 
the localized states appear inside the superconducting gap as: 

ε = Δ cos (δ+ − δ−) (1.23) 

where tan δ± = Kρ0 ± JS/2ρ0, with ρ0 being the DOS at the Fermi level in the 
normal state [48], S the spin, J the exchange interaction and K the Coulomb 
potential. The peak in the density of states is often observed at positive and negative 
energies. The wavefunction has an oscillatory decay as a function of the position, 
given in 2D by: 

1 
h̵vFψ±(r) = √ sin (kF r − 

π 
+ δ±)e −Δ sin(δ+−δ−)r 

(1.24)
NπkF r 4 
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where ψ± are respectively the electron and hole components of the YSR wave 
function ψ, N is a normalization factor, kF is the Fermi wave vector and vF the Fermi 
velocity. This YSR wavefunction results in a peak in the in-gap superconducting 
density of states, whose size oscillates with position, as shown for example in Fig. 1.12 
(c,d). 

Figure 1.12: Adapted from Ref. [50]. Experimental results of spectroscopic 
measurements on 2H-NbSe2 with Fe impurities (a). Magnetic impurities produce 
in-gap states (b) that oscillate between positive and negative energies (c,d) as 
expected from theory. 

1.3 Iron based superconductors 

a b

Figure 1.13: (a) Adapted from Ref. [51]. We show the highest critical 
temperature for each family of superconductors through the years. Conventional 
BCS superconductors are represented by green circles, heavy-fermions by green 
stars, carbon allotropes by red triangles, buckminster fullerenes by purple triangles, 
Fe-based pnictogens by orange squares and cuprates by blue diamonds. (b) 
Extrsacted from Ref. [52]. Upper critical field versus temperature for some 
industrially-used families of materials. The temperature range for different cryogenic 
liquids is marked with blue rectangles and some use cases for magnetic fields of 
different intensities are shadowed in gray. As we can see, iron based superconductors 
attain critical fields of tens of Tesla at temperatures below 20 K, while being 
remarkably more malleable and ductile than other cuprate alternatives. 
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After the discovery of cuprates in 1986 [53], which realised superconductivity above 
liquid nitrogen temperatures, a relevant breakthrough was the discovery of the iron 
pnictide superconductors in 2008 by Kamihara et al. [54]. 

Before the discovery of superconductivity at Tc=26 K in LaFeAsO1−xFx (see 
Fig. 1.13(a)), Kamihara’s group had been focusing in iron based superconductors 
the previous years, finding superconductivity at 6 K in LaFePO in 2006 [55] and at 
2.4 K in LaNiAsO in 2007 [56]. Interestingly, superconductivity appeared with 
a high Tc in systems containing iron, which was thought to be detrimental to 
superconductivity due to its magnetic properties. Iron based materials belong to 
the family of unconventional superconductors, in which it is thought that Cooper 
pairing is not due to the exchange of phonons, but due to magnetic or electronic 
interactions. From a more industrial point of view, iron based superconductors have 
extremely high critical fields and are malleable metals, much better suited for wire 
and coil fabrication than brittle ceramic cuprates. 

In the following years, many different families of iron based superconductors 
were discovered. They are usually referred to with the subscripts in their 
chemical formula: 11 (FeSe), 111 (LiFeAs), 1111 (LaFeAsO), 122 (SrFe2As2), 1144 
(CaKFe4As4), etc. and they all share common structural features like a tetragonal 
unit cell and checkerboard Fe-Pn layers, where Pn is a light pnictogen element (N, 
P, As) or, less commonly, a chalcogen (S, Se, Te). We depict the main structural 
characteristics of iron based superconductors in Fig. 1.14. In this Ph.D. thesis, we 
will mainly focus on the 122-type, as the P-doped BaFe2As2 has this structure. I 
have been also actively working on the new 1144 family [57, 58, 37, 13], participating 
in experiments and growing samples of that system. 

11

FeSe

111

LiFeAs

1111

LaFeAsO

122

SrFe2As2

1144

CaKFe4As4

a b

c

Figure 1.14: Inspired by Ref. [59]. In (a) we show some examples of the most 
representative families of iron based superconductors. Note that they all share 
common features like a Fe and pnictogen layer, highlighted here in grey. We also 
show a lateral (b) and top view (c) of this tetragonal checkerboard layer for better 
visualization. 

1.3.1 General electronic properties of iron based superconductors 

The generic phase diagram of an iron based superconductor is depicted in 
Fig. 1.15(a). A non-superconducting parent compound has a transition (usually 
magnetic, structural, nematic or any combination of them) at low tempertures 
into an ordered phase. This transition is suppressed by means of a non-thermal 
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control parameter like magnetic field, pressure or most commonly, doping. Then a 
superconducting dome develops and reaches maximum Tc close to the point where 
this ordered phase goes to zero, suggesting a competing character and a possible 
superconductivity enhancement thanks to the low temperature fluctuations of the 
ordered phase. The microscopic coexistence of phases is non-trivial and depends 
on the precise details of the chemical system, and exotic behavior like non-Fermi 
liquid properties can arise close to maximum Tc. We will expand this further in 
subsection 1.3.2. 

Fe As

Γ M

holes

electrons

a b

2
 F

e
 U

C
1
 F

e
 B

Z

c

Δ<0

Δ>0 X

Figure 1.15: (a) Extracted from Ref. [31]. Generic temperature vs. 
doping/pressure phase diagram for most iron based superconductors. The 
non-thermal parameter supresses the magnetic/structural transition and a 
superconducting dome develops with maximum Tc close to the extrapolation of the 
ordered transition to zero. Usually non-Fermi liquid behavior is found around the 
maximum Tc. (b) Generic unit cells in the FeAs layer (top panel), with the typical 
Fermi surface for most iron based superconductors (bottom panel): 2-3 cylindrical 
hole bands around Γ and 1-2 electron bands around M. Note that the dashed square 
indicates the 2 Fe atom unit cell, which translates into the reduced (also known as 
magnetic) Brillouin zone, also highlighted with a dashed square. (c) Adapted from 
Ref. [60]. s± pairing mechanism, in which the gap changes sign between the hole 
and electron pockets by means of a magnetic fluctuation vector, here named QSDW . 

On the other hand, most iron based superconductors also share very common 
features in their Fermi surfaces. The generic Fermi surface of an iron based 
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superconductor is depicted in Fig. 1.15(b). Usually there are two or three cylindrical 
hole bands at the center of the Brillouin zone, and one or two cylindrical electron 
bands at the corners. The 2D character varies widely between compounds and 
dopings but most of the time the Fermi surfaces can be considered effectively 
bidimensional. While the conduction electrons in cuprates can be restricted to 
a single 3d orbital at the Cu site, iron based superconductors have six electrons 
occupying the nearly degenerate 3d Fe orbitals, indicating that the system is 
intrinsically multiorbital and therefore that the interorbital Coulomb interaction 
plays an essential role [61]. The superconducting gap can (and usually does) have 
different values in different pockets and parts of the Fermi surface (Fig. 1.15(c)), 
and sometimes it even has point or line nodes where its amplitude is zero, giving 
rise to exotic anisotropies and nodal superconductivity. 

Regarding the pairing interaction and symmetry, iron based superconductors 
are out of the electron-phonon framework and thus are considered unconventional 
superconductors. In this lack of electron-phonon coupling, in order to satisfy the 
self consistent gap equation with a repulsive potential, the order parameter (the 
superconducting gap) must change sign between different parts of the Fermi surface. 
Several gap symmetries and pairings have been proposed in order to account for this 
change in sign, yet the most convincing and accepted today is the s± [62], in which 
the gap changes sign between the electron and hole pockets and superconductivity is 
mediated through a magnetic fluctuation vector connecting electron and hole pockets 
(see Fig. 1.15(c)). 

1.3.2 Quantum criticality in iron based superconductors 

A quantum critical phase transition takes place at absolute zero temperature 
between an ordered and a disordered state. It is not driven by thermal fluctuations 
like regular thermodynamic phase transitions but by quantum fluctuations 
associated with Heisenberg’s uncertainty principle. Such transitions can be triggered 
by the variation of a number of non-thermal parameters like pressure, applied 
magnetic field or chemical doping [63, 64]. As a quantum phase transition only 
occurs at zero temperature, it is usually depicted as a quantum critical point at 
(f = fc, T = 0) in a T vs f phase diagram, being f the non-thermal control parameter 
(see Fig. 1.16(a)). Usually they also involve a characteristic funnel shaped quantum 
critical region above them where quantum fluctuations extend to a finite temperature 
and give rise to exotic non-Fermi liquid electronic behavior. 

As we have introduced in subsection 1.3.1, most unconventional superconductors 
(and specifically iron based superconductors) share a common generalized phase 
diagram in which the parent compound presents a magnetically ordered state, 
usually coupled to a structural transition, that is suppressed by means of increasing a 
certain parameter, usually doping, while a superconducting dome develops [60]. This 
is schematically represented in Fig. 1.16(b) which is a simplification of Fig. 1.15(a). 
The maximum Tc is usually attained at the point where the extrapolation of the 
magnetic transition drops to zero. Whether or not the transition actually drops 
to a quantum critical point or is instead somehow avoided by the surge of the 
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superconductivity itself depends on the specific material and can be difficult to 
prove, but it is certainly a promising setup to probe the fundamental causes behind 
high Tc superconductivity. 
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Figure 1.16: (a) General phase diagram around a quantum critical point. An 
ordered phase is suppressed by means of a non-thermal parameter f into a disordered 
phase that behaves as a Fermi liquid. At zero temperature, this phase transition 
can still occur due to quantum fluctuations at a certain critical point fc, which is 
known as a quantum critical point. Above it, at finite temperatures we usually 
find a funnel shaped region with non-Fermi liquid properties. (b) Generalized phase 
diagram of iron based superconductors. A magnetic phase can be suppressed by a 
control parameter, in this case doping x, giving rise to a superconducting dome. A 
quantum critical point can develop at the point where the magnetic transition goes 
to zero, where also usually the maximum Tc is attained. 

1.4 The Josephson effect 

1.4.1 The Josephson equations 

The Josephson effect, as we will see later on, can be accessed and measured using 
a STM. However, it is much less studied than the electronic density of states. 
As I will show in this Ph.D. thesis, we have uncovered a completely new regime 
for the Josephson behavior, which should be very useful to study unconventional 
superconductors using the STM. It is thus good at this point to remember a few 
basic aspects of the physics of Josephson junctions. 

In 1962, B. D. Josephson predicted the existence of tunnel currents carried by 
Cooper pairs between two superconducting electrodes separated by a thin insulating 
barrier due to the overlapping of the macroscopic wave functions in the barrier 
region [65]. Such a configuration became known as "weak links" or simply Josephson 
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junctions. The two basic equations that describe the Josephson junctions are:
 

superconductors, e is the electron charge, ̵

IJ = Ic sin(ϕ)

dϕ 2e 2π 
dt h Φ0 

= V = V̵

(1.25) 

(1.26) 

where ϕ = ϕ1 − ϕ2 is the wave function phase difference between the 
h is the reduced Planck constant, Φ0 is 

the magnetic flux quantum and Ic is the maximum critical current, which in general 
depends on the magnetic field or the temperature. We can see from the equations 
that there exists a finite current IJ at V = 0 whose value depends on the phase 
difference between the electrodes. We can see a characteristic I-V curve of a tunnel 
Josephson junction in Fig. 1.17, similar to those we obtain in our experiments. 

Supercurrent 

branch

I

V2Δ/e

Ic

Quasiparticle 

branch

Figure 1.17: Typical shape of the I-V curves in the conditions of our experiment. 

If we apply a finite voltage V ≠ 0 to the junction, then from Equation 1.26 we 
obtain that the phase difference varies in time and therefore the Josephson current 
IJ oscillates in time following: 

IJ (t) = Ic sin(ϕ0 + ω0V t) (1.27) 

= 2πwith ω0 Φ0 
the Josephson plasma frequency, which is of the order of GHz to 

THz when the voltage ranges between µV and mV. 
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1.4.2 The RCSJ model 

Although the above mentioned microscopic formalism is useful to describe the 
simplest tunnel cases [66, 67], it fails to account for the interaction of the quantum 
phase with the immediate electromagnetic environment. To this end we will consider 
the resistively and capacitively shunted junction (RCSJ) model, first introduced by 
McCumber and Stewart in 1968 [68, 69]. They study the behavior of the Josephson 
junction as the combination of simple linear circuit elements, in this case a resistor 
and a capacitance shunting a tunnel junction. The equivalent circuit would then be 
described by the following equation. 

Φ0 ∂2ϕ 
+ 

Φ0 1 ∂ϕ 
IJ = C + Ic sin(ϕ) (1.28)2π ∂t2 2π R ∂t 

Equation 1.28 might look familiar since it is a ubiquitous differential equation 
of motion equivalent of that of a damped and driven pendulum. In this case, the 
capacitance term acts as the inertial moment term, the resistor term acts as the drag 
term, the voltage is equivalent to the angular velocity and the applied current acts 
as the driving force. A common way to visualize it is as a particle moving through 
a tilted washboard potential, which is schematically represented in Fig. 1.18 

RJ CJJId

Id = 0

Id = Ic /2

Id = Ic

U(φ)

φ

φ(t)

Figure 1.18: Adapted from Ref. [70]. Washboard potential of an ideal tunnel 
Josephson junction at zero temperature. Note that it is 2π periodic as any additional 
2π phase difference must be physically identical. When Id < Ic, the phase particle 
is trapped in one of the wells. As the drive current increases, the barrier height 
decreases until at the critical current is achieved. At this point, the phase runs 
since the potential no longer has minima and and the resistive state is recovered 
(quasiparticle branch in Fig. 1.17) 
. 

By using the dimensionless reduced time τ = ω0t, we can rewrite Equation 1.28 
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as: 

∂2ϕ ∂ϕ 
i = + β + sin(ϕ) (1.29)

∂τ 2 ∂τ 

with i = II
d

c 
the reduced bias current, Id the driving current, Ic the critical current 

and β = Φ
2π 

0 
IcR2C the Stewart-McCumber parameter. By introducing the new 

= 
∂ϕ variables x1 = ϕ and x2 ∂t ∝ V , we obtain the following differential equation 

that summarizes the behavior of the junction: 

dx2 
−

1
= [sin(x1) + x2 + i] (1.30)

dτ β 

Note that when the voltage is zero, i.e. x2 = 0, we recover the first Josephson 
equation for the DC Josephson effect i = sin(x1). The reduced current i is always 
below 1, as the current is always below the critical current Ic. Above the critical 
current we find though a finite time dependent voltage (x2 ≠ 0) with oscillations at 
a time constant given by τ . 

1.5 Transition metal dichalcogenides 

The transition metal dichalcogenides are probably one of the most thoroughly 
studied families of materials using STM. Studying superconductivity in these 
compounds, we have uncovered a number of interesting features of magnetic 
impurities in superconductors. To address this problem, it is useful to make a brief 
introduction to the specific aspects of the physics of transition metal dichalcogenides. 
These compounds of the form MX2, where M is a transition metal and X is a 
chalcogen element (S, Se, Te), are relatively easy to grow with high chemical purity 
in large single crystals and to exfoliate in thin atomically flat flakes. They display 
a very wide and interesting set of optical, structural, mechanical and electronic 
properties [71], arising from their mostly bidimensional and highly anisotropic Fermi 
surfaces. In this Ph.D. thesis we have mainly focused in one of the most well studied 
representatives of the transition metal dichalcogenides, 2H-NbSe2, and the doping 
series arising from S substitution in the Se atomic place. 

1.5.1 The 2H-NbSe2−xSx system 

The parent compound 2H-NbSe2 is a superconductor below 7.2 K and presents 
a characteristic charge density wave (CDW) ordering below 33.5 K [72, 73], where 
every three atoms the local density of states (from now on, LDOS) is enhanced along 
the crystalline directions (Fig. 1.19(a)). It has very pressure-sensitive electronic and 
superconducting properties [74, 75] and it’s the first compound in which Hess et al. 
observed the Abrikosov vortex lattice with STM in 1989 [24]. Further spectroscopic 
images confirmed a strong in-plane sixfold anisotropy in the electronic properties [26, 
29, 76] that causes vortices to have a characteristic sixfold star shape (Fig. 1.19(b)). 
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At the other end of the doping series, 2H-NbS2 is also a superconductor below 6 
K [77, 78]. However, the CDW transition seems to be absent and the in-plane 
electronic properties are much more isotropic, with perfectly round vortices [14] 
(Fig. 1.19(c,d)). 

a b

c d

1.5

0

1.5

0

2H-NbS2

2H-NbSe2 0 mV

0 mV

Figure 1.19: (a) STM topography at 0.1 K and zero field of a 2H-NbSe2 sample, 
where we can appreciate the enhancement in brightness of one every three atoms 
due to the charge density wave. In (b) we show the zero bias conductance map at 
0.15 T of a large flat surface in 2H-NbSe2, where we can observe the characteristic 
sixfold star shaped vortices. (c) STM topography of a 2H-NbS2 sample taken in 
similar conditions as in (a). We observe the lack of long range ordering whatsoever. 
In (d) we show again the zero bias conductance map in similar conditions to (b), 
and we can appreciate that vortex cores are now completely round. White scale bars 
are 2 nm long, and black scale bars are 100 nm long. All images are adapted from 
Refs. [14, 79]. 

Both 2H-NbSe2 and 2H-NbS2 share the same crystal structure P63/mmc (space 
group 194), depicted in Fig. 1.20. It consists of a hexagonal arrangement of 
Nb atoms sandwiched between two hexagonal layers of Se/S atoms covalently 
bonded. These slabs then are stacked via weak Van der Waals forces in a variety of 
arrangements. The measurements shown in this Ph.D. thesis were done in 2H-NbSe2 

and 2H-NbSe1.8S0.2 samples with 2H-type stacking, in which every Nb atom falls on 
top of each other. 
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Figure 1.20: Crystal structure of 2H-NbSe2 and of 2H-NbS2 (a) and its top view 
(b) and side view (c). The unit cell is marked with a solid black line. Nb atoms are 
shown as dark green spheres and Se or Se atoms as light green spheres. 

1.6 Scope of this work 

Competing or antagonistic phenomena are generally a fruitful ground for new 
discoveries. Advances in the development of microscopes allow directly visualizing 
the phenomena as a function of the position in real space. This contrasts usual 
techniques where the system is viewed as a whole. Using a microscope we can now 
address if the antagonism produces droplets of phases separated from each other, 
in which each phenomenon is more or less unaffected, or a homogeneous state of 
anomalous electronic properties. In both cases, microscopy allows to visualize the 
radically new behavior of antagonistic phenomena in a particularly enlightening way. 

Superconductivity and magnetism are considered as antagonistic phenomena since 
the establishment of the deleterious role of the magnetic field on a superconductor by 
Heike Kamerlingh Onnes in the start of the 20th century. Modern superconducting 
compounds, like iron pnictide or cuprate materials, are capable of holding magnetic 
fields and critical currents many orders of magnitude larger than the initial simple 
systems composed of a single element as Hg, Pb or Al. In the modern compounds, 
superconductivity appears in close proximity to magnetic phases. Furthermore, 
we can introduce and study isolated magnetic impurities in a concentration which 
does not affect macroscopic behavior. This new situation, combined with advanced 
microscopes that allow studying directly the superconducting properties with atomic 
precision, is the starting point of this Ph.D. thesis. 

Superconducting materials can undergo transitions as a function of several control 
parameters, apart from that of superconductivity with temperature. Pressure, 
strain, impurity doping, elemental substitution or applied magnetic field can trigger 
new ordered phases that either coexist or compete with superconductivity. These 
continuous transitions can happen even at zero temperature: the driving mechanism 
is not the thermal fluctuations but the quantum fluctuations in the system. We 
chose to study an iron pnictide system, BaFe2As2, where such quantum criticality is 
attained by the isovalent doping of As by P. As the doping increases, the magnetic 
order vanishes and superconductivity enhances. At a certain P concentration of 0.3, 
the system reaches its maximum Tc precisely where the magnetic order seems to 
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vanish at zero temperature. A close look at the microscopic electronic properties 
at very low temperatures in close vicinity to the quantum critical point sheds 
some relevant clues about the role of quantum fluctuations in the consolidation 
of superconductivity. 

The ability to visualize the electronic properties at the atomic scale gives access to 
a far wider variety of localized phenomena that would simply be averaged out in the 
bulk measurements. Crystalline defects, impurity atoms or superconducting vortices 
have a natural length scale of around few to few hundred nanometers and usually 
cause a local disruption in the superconducting properties of the material. The 
study of the interplay of such features with the surrounding electronic environment 
is a key aspect to understand the microscopic properties of the superconducting 
state and to progress in the nanofabrication of complex materials. To this end, we 
decided to focus on a well-known layered 2D chalcogenide like 2H-NbSe2 and its 
S-doped counterpart 2H-NbSe1.8S0.2 with dilute Fe magnetic impurities, studying 
the interplay between localized states at vortex cores and magnetic impurities as 
well as the effect that the impurities had on the overall electronic properties. 

Recent results in new ordered superconducting states [80] and superconducting 
gap visualization [81] show that there is still a pressing need for the development 
and implementation of new or more precise STM-based techniques. For instance, 
Scanning Josephson Spectroscopy provides information about the Cooper pair 
density and the gap sign, yet its application is still very limited and there are 
ill-understood features. In this work we report the discovery of a new AC Josephson 
coupling between the junction and the measurement circuit that enhances the 
Josephson signal far beyond the critical current and provides the ground for more 
precise or time-sensitive future Scanning Josephson Spectroscopy experiments. 

24
 



2 | Experimental Methods 
Low temperatures and a high spatial and energy resolution are essential to observe 

and study the local electronic properties and correlations of a macroscopic quantum 
state like superconductivity. In the first sections of this chapter I will describe 
the methods and experimental setup that I have used during my Ph.D. research 
at LBTUAM, consisting of a dilution refrigerator and a home-built STM, which 
was manufactured and assembled at SEGAINVEX [82]. After explaining the basic 
elements and the principle of operation, I will also detail the improvements that I 
introduced to the setup. 

A good experimental setup is, however, incomplete without a high quality sample. 
Many superconducting materials present some degree of anisotropy that can only 
be preserved and measured in single crystals. In the second part of the chapter I 
will explain the crystal growth techniques that I practised during my international 
research stay at Ames Laboratory (Iowa, USA). That knowledge was then applied 
to our own crystal growth facilities and led to several recent publications [83, 84, 85]. 

Lastly, a nice sample quality in a good experimental setup is incomplete without 
a proper data analysis of the results. I will also comment briefly about the new 
software developed by members of the team and my contributions to it. This new 
Matlab based software turned out to be instrumental for our group to be able to 
handle large files and achieve a sufficient capability to make images that show clearly 
the underlying physics. 

2.1 The dilution refrigerator 

The wet dilution refrigerator is a cooling device particularly interesting to the 
low temperature STM community, due to two key features. First, it is able to 
produce continously temperatures in the millikelvin range. And second, it is devoid 
of the vibrations produced by dry cryogenic devices, such as pulse tubes or other 
cryocoolers. 

2.1.1 Principle of operation 

The principle of operation of the dilution refrigerator is based on the quantum 
properties of the mixture of 3He and 4He and it was first proposed by Heinz 
London in 1951 [86, 87]. As we can see in Fig. 2.1, the binary phase diagram 
of 3He and 4He consists of three main regions. At high temperatures the λ-line 
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separates the normal fluid phase (white, right) from the superfluid phase (blue, left). 
When the coexistence curve is hit, however, a forbidden region develops (yellow, 
bottom) in which the mixture is separated in two distinct phases with different 3He 
concentrations: a dilute and a concentrated one. Since the dilute phase is richer in 
4He, the concentrated phase floats on top of it due to its lower density. 
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Figure 2.1: Phase diagram of 3He–4He mixture. The λ-line separates the normal 
fluid from the superfluid. The tricritical point (T = 0.86 K), establishes the 
temperature where the liquid separates into two inmiscible phases, the concentrated 
phase being almost pure 3He (right hand side of the diagram) and the dilute one, 
rich in 4He (left side). 

The dilution refrigerator consists of a set of pumps, tubes and chambers that can 
cause the phase separation of the 3He–4He mixture and exploit its cooling power in 
a continuous operation. In Fig. 2.3 we show a comprehensive diagram of the whole 
cryogenic system, side-to-side with an actual photo of the dilution stage in which 
the different parts are indicated. The experiment needs to cool down to 4.2 K by 
means of an outer liquid 4He bath before the process starts. The 3He–4He mixture 
composition in our case sits at around 15% 3He. 

Let us consider a point (T, xC ) in the phase diagram at a certain temperature 
T and 3He concentration x. By reducing the temperature at constant composition, 
one will eventually hit the coexistence line and attain the phase separation at T′ , 
where the composition will split between the concentrated (T′ , xC ) and the dilute 
(T′ , xD) phases. From this point, further reducing the temperature implies that 
the concentrated phase gets more concentrated (T′′ , xC ) and the dilute phase, even 
more dilute (T′′ , xD). Below 0.1 K, the 3He concentration is practically 100% in the 
concentrated phase, and ranges between 7% and 6.4% in the dilute one [88]. The 
fact that this lowest dilute 3He concentration is finite is relevant since it avoids the 
exponential decay of the cooling power below 300 mK [89] characteristic of other 
cooling systems like the 3He evaporation (see Fig. 2.2). 
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Figure 2.2: Cooling power of the dilution refrigerator compared to a classic 3He 
evaporation system. Graph adapted from Ref. [88] 

The cooling process consists of a series of steps: first, the mixture is at ambient 
temperature and gets injected into the condenser, where it slowly cools down to ∼1.5 
K thanks to its thermal contact with the 1K pot, which is cooled by the continuous 
extraction and evaporation of 4He from the bath. Once the mixture is liquid it 
continues going down through the heat exchangers, where it further cools down 
below the coexistence line. The phase separation interface occurs inside the mixing 
chamber, which is the coldest stage in the system at around 10 mK [90]. The 
mixture is then pumped through the heat exchangers up to the liquid-gas interface 
at the still, which sits at around 700 mK. Notice that due to the difference in vapor 
pressures between 3He and 4He at this temperature, the main part of the evaporated 
gas is pure 3He. Hence, the 3He concentration is constantly reduced in the still, 
generating an osmotic pressure gradient between the still and the mixing chamber 
that continuously drives 3He atoms from the concentrated phase into the dilute 
phase and up to the still, cooling the downflowing mixture at the heat exchangers 
on its way up. Finally, the 3He gas is pumped up back into the condenser after some 
purification with activated carbon filters inside a liquid N2 trap, and the process 
starts over. The initial 3He concentration and the volume of the mixture must be 
precisely selected for the phase separation to occur at the mixing chamber and have 
the liquid-gas interface at the still. 

The STM stage is thermally attached to the mixing chamber. The needed wiring 
is soldered from the connectors through vacuum feedthroughs and thermalised in 
two intermediate stages. Mechanical vibrations, which could also negatively impact 
on the quality of the results, are minimized thanks to two key aspects: first, the 
pumps are physically isolated from the experiment in a different room and the tubes 
go through a sandbox before getting to the experiment. Second, the cryostat system 
is suspended with strings from the ceiling to decouple the low-frequency building 
vibrations from the high-frequency resonances of the stiff STM body. The cryostat 
is also equipped with a 9 T superconducting coil that lies at the bottom of the 4He 
bath. 

27
 



Chapter 2 Experimental Methods
 

3He (gas)

Concentrated phase

Dilute phase

4He (liquid at ~4.2 K)

4He (liquid at ~1.5 K)

4He (gas)

4He pump 3He pump

Liquid 4He bath

Inner vacuum chamber

Outer vacuum chamber

1K pot

Condenser

Heat 

exchangers

Main 

impedance

Still

Mixing 

chamber

STM stage

To recovery line

Liquid N2

Trap

Figure 2.3: Diagram of the cooling system (left) and actual photo of the dilution 
stage, in which the different stages are indicated (right). 

2.1.2 Improvements to the setup 

The setup I used was installed and used before me [91, 34, 37]. However, there were 
a number of issues that I needed to address to be able to make the measurements 
shown in this Ph.D. thesis. 

The first set of improvements were aimed at reducing the base temperature of the 
setup, which over the years had been increasing up to 800 mK. This was enough for 
high Tc superconductors but definetely not ideal for the purpose of this Ph.D. thesis. 
The first guess was that our 3He–4He mixture had been losing 3He and now was too 
poor to attain the phase separation inside the mixing chamber. We installed a 3He 
flow meter through the injection line, but the readings confirmed that the 3He flow 
was correct. Then we considered a leak in the inner vacuum chamber. We polished 
the indium joint, depicted in Fig. 2.5, to remove any mark or scar and successfully 
removed the leak, being able to cool down to 150 mK. 
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Figure 2.4: Photo of the complete experimental setup, including the cryostat and 
insert, the pumping and cooling systems, the acquisition and control electronics, the 
sample preparation table and the image analysis computer. 

The second main concern to address was the mechanical stability and reliability 
of the STM, which was good enough for few hours long measurements but was 
unable to stay over the same spot of the surface for several days or weeks, or in 
between 4He transfer processes. This limited the amount of results and the scope of 
the experiment. The way to resolve this problem came from different directions: 
first, the 3He pumping line was passed through a home-built sandbox separate 
from the injection tube and the 1K pot pumping tube. This reduced substantially 
the mechanical vibrations transmitted to the cryostat through the tube when the 
dilution was operating. Second, the interstitial space in between the upper heat 
shields of the insert was filled and wrapped with EVA foam (see Fig. 2.5). This 
forces the passage of 4He gas close to the inner walls of the cryostat. The gas then 
more efficiently cools the shield in the outer vacuum of the cryostat, reducing the 
liquid He consumption and increasing the hold time. The third big improvement was 
the installation of theater curtains in the room around the experiment. Due to their 
texture, shape and weight they reduce noise and acoustic vibrations. Lastly, derived 
from the usual cleaving system in this setup [92], I developed a new miniaturized 
cleaving method for micrometric samples that was better suited for the iron pnictide 
samples that have been measured in this Ph.D. thesis. 
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Figure 2.5: Detail photo of the EVA foam filling and wrapping process in the 
upper heat shields of the insert. The picture also depicts the indium joint which was 
polished to mitigate the leaks. 

Another relevant aspect was the operation of the needle valve. Water vapor from 
the atmosphere leaked into it when pouring liquid N2 into the cryostat, so the valve 
clogged most of the times. To avoid this problem, we developed a closed circuit of 
He gas that cooled when passing through a copper serpentine immersed in liquid N2 

and was injected directly into the cryostat. This allowed for the needle valve to be 
open to a constant flow of He through the entire cooling process and prevented any 
outerwater vapor to condense and freeze inside. This new clean and simple cooling 
method eliminated the need for liquid N2 into the cryostat [93]. 

a b

Figure 2.6: In (a) we show a diagram of the new liquid nitrogen-less cooling system. 
In (b) we can observe a typical cooling curve obtained with this method. 

30
 



Chapter 2 Experimental Methods
 

2.2 STM at low temperatures 

STM is an experimental technique that combines the tunnel effect and the 
piezoelectric effect to achieve extremely high spatial resolution in conductive samples 
and probe the local electronic properties close to the Fermi energy. It was invented 
by Rohrer and Binning at IBM laboratories in Zürich [94, 95, 96, 97]. Thanks to their 
invention, they were both awarded the Nobel Prize in 1986, only 4 years later, which 
gives an idea of the revolution it caused. In this section I will review the basic notions 
to understand its operation and results, as well as the actual implementation in our 
experimental setup and the improvements carried out in hardware and software. 

Two electrodes separated by a nanometric insulating layer can have an electric 
current pass between them. This phenomenon, known as quantum tunnelling, 
is made possible thanks to the quantum nature of electrons at short distances. 
Bardeen proposed in 1961 the tunneling Hamiltonian formalism [98], which only two 
years after the invention of the STM was adapted by Tersoff and Hamann [99, 100] 
to explain the experimental phenomena, using typical sizes and energies observed 
in experiments. They found that the amplitude of the tunnel current is directly 
proportional to the density of states of the sample and it decays exponentially with 
the distance between the electrodes. 
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Figure 2.7: We represent schematically the tunneling process. The density of states 
(DOS) is shown as orange (tip’s DOS) and green (sample’s DOS), vacuum in white. 
A Bloch wavefunction in the tip is schematically shown by the brown line and by the 
green line in the sample. The surface potential is shown schematically by the light 
blue line and the work functions of tip and sample by the blue arrows. The voltage 
difference between tip and sample is schematically shown by a red arrow. The gap 
between tip and sample, of size d is represented by the black arrow. The tunneling 
current is represented schematically by a white disk (a hole) in the tip and a red 
disk (an electron) in the sample. 

In the STM, the two electrodes are the tip and the sample. Using the Tersoff 
and Hamman first order approximation of the Bardeen’s transfer formalism, we can 
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obtain the following expression for the tip-sample current:
 

+∞4πe
Itip−sample(V ) = ∫ [f(ε + eV ) − f(ε)]Nsample(ε + eV )Ntip(ε)�M �2dε (2.1)

h̵ −∞ 

Where f(E) is the Fermi distribution, Nsample is the density of states of the sample 
and Ntip is the density of states of the tip. We will refer to them in subsequent 
equations as Ns and Nt for simplicity. In this approximation, we can assume that 
the tunnelling matrix element M [98] is energy independent and constant through 
the tunnelling process. 

Conversely, we should also consider the sample-tip current, which would have a 
similar expression. We will only consider from now on the total tunnelling current 
IT , which is the sum of both contributions. The process is represented schematically 
in Fig. 2.7 

The tunneling current depends exponentially on the distance d between both 
electrodes as: 

IT (d)∝ e−2νd (2.2) 

Typical metals used in STM tips like Au or W have their work functions at around 
5 eV , which leads to decay constants ν to be around 1 Å−1, i.e. an increase (decrease) 
of 1 Å in the tip-sample distance leads to a decrease (increase) of a factor of e2 ≈ 10 
in the tunnel current. This is what gives the STM its tremendous spatial resolution: 
very slight changes in height (or, in essence, electronic wave functions overlap) lead 
to large changes in tunnel current. 

X+

X-Y-

Y+

Z

piezoelectric

z1

z2

(x1,y)

(x2,y)

+V
+V-Va b c

Figure 2.8: (a) Vertical cartoon representation of the piezotube. A hollow piezo 
cylinder is covered with four outer and one inner electrodes, with the tip (not shown) 
fixed at the bottom. (b) A voltage applied to the inner electrode will cause the 
piezotube to elongate or contract along its axis, modifying the tip’s height. (c) A 
voltage applied to the outer electrodes will cause it to bend sideways, allowing for a 
fine XY scan. 
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The second main principle for the operation of the STM is the piezoelectric effect. 
If the tunnel effect is the physical phenomenon that allows for sub-nanometric 
sensitivity, the piezoelectric effect is the key to exploit it and control ultra-precise 
XYZ displacements of the tip. Piezoelectrics (from now on, piezos) are materials that 
deform in some way under an applied voltage. This deformation can be volumetric, 
directional or shear and it is usually written as a tensor. 

In the STM used in this Ph.D. thesis we use a piezostack macroscopic tip height 
positioning system, explained elsewhere in detail [101], and a piezotube to control 
the fine positioning of the tip. The piezotube is a hollow piezo cylinder with four 
outer opposing and one inner electrodes (X+,X−, Y +, Y − and Z, see Fig. 2.8). The 
tip is fixed to its bottom and it can scan a window up to 2×2 µm2 by applying 
voltages of the order of ±140 V. 

The rest of the components of the STM are shown in Fig. 2.9. This compact 
design is well suited for low temperatures and high magnetic fields. The titanium 
cylindrical central piece has a diameter of 50 mm. The tip cleaning and sharpening 
method, as well as the in-situ cleaving and macroscopic movement system have been 
extensively described elsewhere [90, 102, 103] and has been adapted and miniaturized 
in this Ph.D. thesis for micrometric samples. 

Titanium body

Piezostacks control  

the Z’ displacement

Piezotube

Tip

Sample(s)

Movable sample holder

Spring (return of the 

sample holder to its

initial position)

50 mm

Figure 2.9: Schematic cartoon (left) and actual photography (right) of the STM, 
with its main parts indicated. 

2.2.1 New micrometric cleaving method 

Many single crystalline samples have been cleaved in the host laboratory in the past. 
Mostly these were however millimeter-sized samples. Some of the samples measured 
in this this Ph.D. thesis are thin plates of about 200 microns lateral size. This 
required a redesign of the cleaving method, which is schematized in Fig. 2.10(d-f) 
and compared to the classic cleaving method in Fig. 2.10(a-c). 
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Figure 2.10: We compare the classic cleaving method (a-c) with the new 
micrometric cleaving method (d-f). In (a), the sample is mounted next to the 
sample and a brass piece is glued on top, which is then tied to a counterweight 
through a string. (b) When the sample holder is moved, the brass piece hits the 
copper bridge and the cleaved surface is exposed right below the tip (c) to start 
measuring. (d) With the new method, the micrometric sample is glued on top of the 
gold sample and the brass piece and counterweight are substituted by custom carved 
alumina pieces joined with a fishing wire. The copper bridge is smaller and closer to 
the sample. (b) When the sample holder moves, the alumina piece hits the copper 
bridge and cleaves the sample. (c) In this case, during the previous calibration of 
the tip position, its initial position is made off sample on purpose, just behind it. 
During the experiment, the sample holder is slowly moved until the tip eventually 
reaches the sample. 

To cleave such small samples we first manually made a prism of alumina that had 
exactly the same base shape and size as the sample. We managed to do that by 
enclosing a piece of alumina into Crystalbond-509 and grinding it. We then glued 
the small alumina prism on the sample (Fig. 2.10(d)). We also made sure that the 
sample was glued on gold with silver epoxy, having gold on all sides (Fig. 2.10(d)). 
Finally, we took care to use a light counterweight so that the sample is not cleaved 
at high temperatures when manipulating the whole cryostat. 

2.2.2 Image acquisition 

The STM can be operated by scanning the tip at a constant height on top of the 
sample. This provides good images of the topography of the sample. However, it 
can only be made in surfaces which are very flat. The STM can also be operated 
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using a feedback loop that maintains the current at a constant value by acting on 
the z-position of the tip. Thus, any step or feature that appears during scanning is 
avoided thanks to the feedback loop (see Fig. 2.11). This is the way we have worked 
in this Ph.D. thesis. 

Control

electronics

DAC/ADC

PID

feedback

loop

IV

converter

Bias

voltage

Tip

Sample

IT ~ e-2νd

d

Figure 2.11: Schematic representation of the electronics used in the experimental 
setup to set, control and measure scanning tunnelling images. 

The tunneling current at zero temperature for a tip with a featureless density of 
states can be written as: 

4πe
IT (V ) = �M �Nt ∫ 

eV 
Ns(ε)dε (2.3)

h̵ 0 

From this, we can see that the tunneling current is the integral of the density 
of states between the Fermi level and the bias voltage. When measuring at a 
constant current we thus obtain this information through the value of the signal 
to the feedback. By plotting the value of the feedback as a function of the position 
during a scan, we thus make an image of the integrated density of states between the 
Fermi level and the bias voltage. If we take the derivative of the tunneling current 
(at zero temperature), we obtain the conductance, which is equal to the density of 
states, following: 

σT = 
dIT (V )

� ∝ Ns(eV ) (2.4)
dV T →0 

At a finite temperature, the tunneling conductance is given by the temperature 
convoluted with the density of states. We can schematically describe the behavior 
using Fig. 2.12. When we have a normal tip and a normal sample, both with a 
featureless density of states, we obtain a linear I-V curve (Fig. 2.12(a-c)). When 
measuring a superconductor with a normal tip, we obtain zero current inside the 
superconducting gap and the derivative is very similar to the density of states 
(Fig. 2.12(d)). The current at zero bias is zero, and it increases with a finite bias, 
because the temperature modifies the distribution of occupied and unoccupied states. 
When increasing the bias, there are overlapping electron and hole states states that 
are empty or full due to thermal excitation (Fig. 2.12(f)). When measuring with 
tip and sample being both superconductors (Fig. 2.12(g-i)), the same occurs, but 
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there is an increased current at the bias voltage for which the quasiparticle peaks 
of tip and current overlap, which is equal to the difference between both gap values 
(Fig. 2.12(i)). 
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Figure 2.12: Density of states of sample (a,d,g) and tip (b,e,h) and typical typical 
IV curves (c,f,i) obtained in three different scenarios: normal tip and sample (a-c), 
normal tip and superconducting sample (d-f) and superconducting tip and sample 
(g-i). 

2.3 Synthesis of intermetallic single crystals 

2.3.1 Flux growth of binary intermetallic compounds 

An interesting method to obtain single crystals is the flux growth or solution growth 
method. The method requires a deep knowledge and intuition to find systems that 
can be grown with high quality. Prof Paul C. Canfield has described the method in 
detail in several works [104, 105, 106]. An brief summary follows: 

1.	 Study of the phase diagram. The solution growth requires precise study of 
phase diagrams. An example of a binary phase diagram is provided below. 

2.	 Preparation of the crucibles. The starting composition is weighed in a precision 
scale and put inside an alumina crucible that will act as the reaction pot. 

3.	 Preparation of the ampoule. The crucible is put inside a silica ampoule 
previously closed at its bottom. Then an alumina frit filter and another upside 
down crucible are put on top of it to effectively close the reaction chamber. 
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Some quartz wool in the top and bottom acts as cushion. The ampoule is then 
evacuated, filled with a thin inert gas atmosphere and closed with a hydrogen 
torch. 

4.	 Thermal cycle in the furnace. The ampoule is put inside a furnace programmed 
with the previously calculated thermal cycle. Typical cycle times range from 
100 to 300 hours and consist of a rapid heating followed by a very slow 
cooldown. Most of the starting materials melt and mix at the beginning of the 
cycle, and then the desired crystal starts precipitating from the liquid upon 
cooling. The slow cooling rate in a favorable solvant environment allows for 
the coherent block-building of the single crystals over large sizes. 

5.	 Centrifugation. Solution growth is ideal to obtain compositions which occur 
when melting is incongruent. Then, usually the crystals are obtained by 
spinning the liquid, as described later on with an example. 

6.	 Extraction and cleaning of the single crystals. The ampoule is broken and the 
crystals extracted from the crucible. 
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Figure 2.13: Solution growth of γ-Bi2Pt, with schematic representations and actual 
photos of the components. After a thorough study of phase diagram (1) the initial 
composition is weighed (2), sealed inside the ampoule (3) and put inside of the 
furnace (4). Then it is rapidly heated above the liquidus line (1A) and then slowly 
cooled down. The moment it crosses back the liquidus line (1B) the crystal starts 
forming (1C) as the liquid gets poorer in Pt (1E). When enough crystal has formed 
(1D), the crystal is quenched (5) and extracted from the crucible (6). 
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Let us discuss the example of γ-Bi2Pt. The binary Bi-Pt phase diagram is shown 
in Fig. 2.13. We see that the γ-Bi2Pt phase can only be obtained by cooling a 
mixture of liquid and γ-Bi2Pt. We may start with a composition and temperature 
A and cool. When we reach B, crystals start to form (C). When we cool further, 
part of the crucible has solid crystals of γ-Bi2Pt (D) and the other part liquid with a 
composition (E). We can then spin the ampoule, so that the whole growth is forced 
to go through a filter. The crystals remain at one side and the liquid is poured to 
the other side of the filter. We can then recover the crystals. 

2.3.2 International stay at AmesLab 

I participated in the initiative of materials synthesis at the LBTUAM since its 
beginning. I helped improving many aspects of the materials synthesis lab. The lab 
has two programmable furnaces, a hydrogen torch in a fireproof hood and a pumping 
system and valve manifold. The centrifugue is home-made. 

I started learning and practising my first crystal growths during my Physics 
degree in the La-Pb system. I kept improving in my master’s degree, focusing 
on the synthesis of the iron-free pnictide superconductor LaRu2P2. The results on 
these crystals were recently published after further magnetoresistence measurements 
by the group [85]. Due to my high interest in this field, I was offered to do a 
4 month international research stay at AmesLab Iowa (USA), home office of Paul 
Canfield’s group. There I found top level crystal growth facilities and I could actively 
participate in state of the art growth techniques of pure and Ni-doped CaKFe4As4 

[107, 57, 58, 37]. I did also research on the Cs-Eu-Fe-As quaternary system as well 
as other well-known representatives of the pnictide family like CsFe2As2 or KFe2As2. 

After the return to my home institution, thanks to the newly gained knowledge I 
helped to develop several improvements to the crystal growth facilities. We increased 
the size of the fireproof hood and added more pumping lines with a new argon filled 
high pressure line. We got a new bigger 1200○C furnace and we placed it inside of 
a new aspiration hood. We improved the arc furnace cooling system and designed 
a new setup for cleaner blasts. We implemented a new temperature controller and 
developed a new database catalog that accounted for every sample that was ever 
grown in, or sent to LBTUAM, assigning a unique code to each batch. 

One of the most interesting compounds grown at LBTUAM is γ-Bi2Pt. It has a 
layered trigonal structure and presents a very interesting orientational dependence of 
the magnetoresistance, switching from a saturating behavior with the field parallel 
to the plane to a nonsaturating behavior up to 20 T when the external field is 
perpendicular to the ab plane. In between at the very specific magic angle of 8.3○, 
the magnetoresistance is perfectly linear due to the open orbits in the Fermi surface 
[83]. Fig. 2.14 shows the main results obtained in the γ-Bi2Pt system. 
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Figure 2.14: Extracted from Ref. [83]. (a) Crystal structure of γ-Bi2Pt. (b) In blue, 
we show the x-ray diffraction pattern of γ-Bi2Pt powder. Red bars show the positions 
of the peaks expected to appear in this compound. The asterisks mark the peaks 
associated with residual Bi and Bi oxides from flux growth. The inset shows a picture 
of the single crystal with four contacts used for resistivity measurements. The white 
scale bar is 0.2 mm long. (c) Colored lines show the temperature dependence of the 
resistivity at different magnetic fields. The field is applied at an angle θ=8.3○, which 
is also the precise angle at which we find nonsaturating linear magnetoresistance. 
The temperature dependence is very similar for all field orientations. The inset 
shows a scheme of the direction of the applied current and magnetic field. 

2.3.3	 Growth and characterization of crystals of iron based 
superconductors: 1144 and Ba122 systems. 

One of the main goals of the international stay at Ames was to produce high quality 
ternary and quaternary iron based superconductors at their specialized facilities, 
which had special fumehoods and gloveboxes to operate with toxic arsenides. In 
collaboration with W. R. Meier, we studied and expanded the grounds for the 
successful growth of pure and doped crystals of CaKFe4As4 [108]. The crystals from 
those very same batches we obtained at AmesLab back travelled to Spain at my 
return and were object of intense study by J. Benito-Llorens, with my collaboration 
[101, 13]. 

As more elements are introduced in the mixture, the dimension of the phase 
diagram increases. In the case of a quaternary compound like CaKFe4As4, the phase 
diagram is not a bidimensional map with equilibrium lines like the one depicted in 
Fig. 2.13(a), but a five-dimensional object in which each element is at the corner 
of a tetrahedron and the temperature sets isovolumes inside. To operate with such 
a complex object, it is always a good idea to decompose the problem into simpler 
approximations that let us reduce the degrees of freedom. 

This was made by W. R. Meier during his Ph.D. In the case of CaKFe4As4, 
the four corners at Ca, K, Fe and As can be intersected by planes wich represent 
simple combinations of them that eventually reduce the problem to a much simpler 
pseudoternary phase diagram between CaFe2As2, KFe2As2 and FeAs, as depicted 
in Fig. 2.15. Then a Marco Polo-type approach was taken to expore the phase 
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diagram and probe the resulting compounds for each starting composition. The 
best results were obtained with starting molar ratios inside the ampoule 1.2:0.8:1 
of K:Ca:Fe0.512As0.488 and a temperature profile like the following: from room 
temperature to 650○C in 1h, stay there for 3h, up to 1180○C in 2h, stay there 
for 5h, cool down to 1050○C in 2h, stay there for 0.5h, finally cool down to 930○C in 
30.5h and spin. The process is described in great detail in Ref. [108]. 

a b

Figure 2.15: Extgracted from Ref. [108]. (a) The three-dimensional quaternary 
Ca-K-Fe-As phase diagram. The shaded blue-gray plane represents the compositions 
with equal iron and arsenic fractions. The red ellipse below FeAs represents the 
primary solidification region (primary phase field) of CaKFe4As4 (compositions 
where pure single crystals can be grown) determined through optimization. (b) 
An enlarged pseudoternary phase diagram of composition near FeAs. The proposed 
primary solidification regions of each phase are shaded. Blue is CaFe2As2, gray is 
FeAs, red is CaKFe4As4, and purple is KFe2As2. 

The crystal growth of BaFe2(As1−xPx)2 was tackled starting from a ternary 
phase diagram. The difficulty is much different, as the starting point is easier to 
comprehend. This growth was made by the group of I. R. Fisher at Stanford. For 
most of the desired As/P compositions, micron-sized crystals can be obtained by 
mixing stoichiometric mixtures of Ba and FeAs/FeP/As/P inside of the ampoule, 
depending on the target. The most successful temperature cycle involved dwelling 
at 700 ○C for 12 hours before warming up to 1190 ○C over 18 hours, then holding 
at the peak temperature for 12 hours. The cooldown was also key in determining 
the doping and homogeneity of the crystals [109]. The cooldown procedure was as 
follows: 1190 ○C to 1090 ○C in 60 hours, 1090 ○C to 995 ○C in 60 hours and finally 
995 ○C to 950 ○C in 72 hours [109]. The quality of the crystals could further be 
improved by annealing for a week at 950 ○C. Additional details about the growth 
are available in the supplementary information of Ref. [109]. 

It turns out that, alas, I did not include any study made with a crystal I grew 
into this Ph.D. thesis. The reasons why I did not study the samples I grew with the 
STM are varied. Either the system had already received attention by my colleagues 
(CaKFe4As4), it lead to samples that were too small and scarce to measure using 
my STM (LaRu2P2) or it did not cleave well and were too far from the aims of 
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my PhD (γ-Bi2Pt, Ru2Sn3 and the compounds of the La-Pb series). This shows 
that sample and technique often go together, and STM requires a particular set 
of single crystalline samples that provide neat surfaces and are available in large 
quantities to make many cleaves. It is certainly a remaining challenge for my host 
laboratory to tackle this issue in future. I also must say that I got into unexpected 
results in very basic problems regarding STM measurements, thanks also to the 
improvements I made in my equipment. I decided to prioritize understanding such 
results (Josephson effect and YSR states), simply because I managed to unveil them 
for the first time. 

2.4	 Interpretation of patterns in images of the density of 
states 

2.4.1 Scanning Tunneling Spectroscopy 
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Figure 2.16: Typical STS measurement. For every pixel, the computer opens the 
PID loop and takes two I-V curves at constant height. By taking the derivative of 
all these I-V curves, one can obtain the conductance map at each bias voltage. In 
the figure, we show the importance of this technique by selecting and highlighting 
the I-V and conductance curves of two different pixels A and B, which seem to have 
a similar value of the height in the topography but behave in a very different way 
with respect to the bias voltage, as pixel A is inside a vortex core. 
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Topography images measure the tunnel current value at a fixed bias voltage and 
thus show the integrated contribution of the LDOS from the Fermi level to the 
applied bias voltage. However, one could also wonder what the energy dependence 
of the LDOS looks like (see Equation 2.5). This can be realized with Scanning 
Tunneling Spectroscopy (STS) measurements, in which the feedback loop is opened, 
the height is kept constant and two I-V curves (ramp up and ramp down) are taken 
and recorded for every pixel in the image. This way we can measure the tunnel 
current not only as a function of the position of the tip, but also as a function of the 
bias voltage at each point. STS is the key to unveil and study some crucial features 
in superconductors like vortices, YSR states or pair breaking defects, which usually 
don’t show in topographies and we will thoroughly discuss in this Ph.D. thesis. In 
Fig. 2.16 we can see a detailed explanation of the acquisition and interpretation 
process of STS measurements. 

2.4.2 Quasi-Particle Interference imaging 

Apart from vortex imaging, which has been extensively described elsewhere [31], one 
of the main techniques derived from STS is Quasi-Particle Interference imaging (or 
QPI, for short). Together with ARPES [110], it is a very powerful tool to determine 
the band structure in metals and superconductors, with the main advantage over 
photoemission that it is able to both probe the occupied and unoccupied electronic 
states [111, 112]. 
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Figure 2.17: Basic example of a QPI scattering pattern, adapted from Ref. [113]. 
In (a) we show a STS image at zero bias and 150 mK of a flat Cu(111) surface. 
White scale bar is 10 nm long. Instead of a homogeneous LDOS, we can see that 
some point defects cause conduction electrons to scatter oscillations in all directions. 
(b) The Fourier transform reveals that in reciprocal space all scattering events have 
a characteristic momentum 2kF , which is set by the shape and size of the parabolic 
conduction band of Cu, here represented as a 2D cartoon in (c). 

In an ideal metal, the momentum eigenstates of the LDOS are the Bloch functions 
Ψ(rk). From the relation: 

LDOS(E, r)∝∑ �Ψ(rk)�
2δ(E − ε(k)) (2.5) 

k 
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one can see that introducing Bloch functions does not produce any observable 
spatial modulation with wave vector k. Thus, the LDOS is spatially homogeneous. 
However, in the presence of defects or impurities, the crystal lattice periodicity 
is broken and scattered conduction electrons produce oscillating patterns on the 
surface, which are sometimes named Friedel-like oscillations [114, 115]. These 
oscillations resemble the waves produced when throwing a stone into a pond in 
the simplest isotropic parabolic band case depicted in Fig. 2.17, but usually are 
more complex in most samples, which have an intrincate band structure. 

To discuss QPI, we can consider only elastic scattering, i.e. events that move 
electrons between two states with the same energy and wave vectors k1 and k2. 
Thus, scattering patterns are observed at wave vectors q = �k1 − k2� [116]. The 
intensity of the scattering patterns is proportional to the joint density of states 
(JDOS), the density of states at k1 multiplied by the density of states at k2. The 
density of states is inversely proportional to the energy derivative of the dispersion 
relation. Thus, and increased JDOS is observed close to van Hove anomalies or 
places with a flat dispersion relation. On the other hand, and enhanced JDOS is 
also found when the band structure has parallel portions on the surface. Finally, one 
should bear in mind that the electronic oscillations may be modulated by the local 
potential of the scatterer impurity, which usually depends on the type and shape 
of the impurity or defect and may affect the QPI signal in some directions, as for 
instance at a step edge, where only the scattering perpendicular to the edge will be 
visible [117, 118, 119, 120]. 
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Figure 2.18: Adapted from Ref. [121]. We show in (a) schematically a simplified 
Fermi surface of a square lattice. We assume one central pocket (dark blue circle), 
whose size is exactly equal to pockets (light blue circles) at the corners of the 
Brillouin zone (dashed lines). We represent the main scattering vectors (see also 
text) as arrows. In (b) we show the expected scattering pattern. Notice the change 
in size of the field of view in reciprocal space. The scattering vectors are represented 
as arrows, and correspond to points or circles in q space. 

In Fig. 2.18 we discuss with an example the relation between the band structure 
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(Fig. 2.18(a)) and the scattering pattern (Fig. 2.18(b)). We see that scattering of 
two spherical Fermi surfaces (q1) leads to four Bragg peaks, provided that the two 
surfaces are exactly equal. Scattering among the same Fermi surface (q2 and q3) 
leads to eight Bragg peaks (yellow and green in Fig. 2.18(b)). Isotropic scattering 
inside a band (q4) will generate a circular pattern (blue circle in Fig. 2.18(b)). The 
scattering patterns extend over the size of the first Brillouin zone (Fig. 2.18(a)). In 
Fig. 2.18(b) the plane axis are doubled. 

2.4.3 QPI analysis software 

In order to analyze the raw data produced by the experiments, we developed at 
LBTUAM a Matlab based software named blqAnalysis. The current version of the 
software can be downloaded from here and provides a broad set of tools to analyze 
topographies and conductance maps, like conductance curves smoothing, Delaunay 
triangulation with automatic vortex recognition, number and distance to nearest 
neighbors, vortex core size fitting, multifractal analysis, gap map, removal of bad 
points and lines, dynamic equalization of the contrast, gaussian filter, temperature 
deconvolution, mass exporting of the conductance maps and Fourier transforms or 
conductance averaging of a region [122]. 

a b c

Figure 2.19: (a) Main window of the blqAnalysis Matlab program. Clicking on 
the highlighted red and blue tabs will open a new analysis applet for the real (b) 
and reciprocal space (c). Other buttons, sliders and tabs will as well call different 
functions or applets to perform other more specific analysis. 

My main contributions to it have been the calculation and representation of 
the Autocorrelation Function of an image (see subsection 2.4.4), the obtention of 
the differential strain map from the Lawler-Fujita algorithm (see subsection 2.4.5) 
and many improvements in QPI pattern noise reduction and manipulation, like a 
symmetrization applet compatible with a wide set of crystalline geometries. We 
show in Fig. 2.19 a typical screenshot of the QPI analysis applet together with the 
main app, analyzing data obtained from a BaFe2(As0.7P0.3)2 sample. 
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To enhance the signal to noise ratio, we can take advantage of the periodicity of the 
lattice and make a symmetrization of the scattering pattern following the symmetry 
of the lattice. For example, in a surface with a hexagonal atomic arrangement, a 
C6 symmetrization (see Fig. 2.20) produces a clearer visualization of the scattering 
patterns. 

a b

A

A

A

Before symmetrization After symmetrization

Figure 2.20: Fourier transform of the conductance map of a 2H-NbSe2 sample 
before (a) and after (b) the symmetrization process. Due to crystalline symmetry 
arguments, the two sectors A highlighted in (a) are averaged out between them and 
the rest of the equivalent sectors. After the process, the periodic features are more 
prominent and the noise has greatly canceled out. Every sector in the symmetrized 
image (b) is either a reflection or a rotation of sector A. 

2.4.4 The autocorrelation function 

The statistical autocorrelation function (ACF ) is an offset independent method 
that measures the correlation between any two points separated by a distance r. 
The spatial autocorrelation function ACF (r) of an image is given by the correlation 
of any two pixels i and j of the image that are separated by a given vector r = (r, θ) = 
ri − rj , where ri and rj are the position of those pixels. We can define it as: 

ACF (r) = 
N

1 
(r) ∑

(Ii − ⟨I⟩1)(Ij − ⟨I⟩2) (2.6) 
i,j σ1σ2 

where 

N(r) = ∑ δr,(ri−rj ) (2.7) 
i,j 

1
⟨I⟩1 = 

N(r)∑ δr,(ri )Ii (2.8)−rj 
i,j 
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1
⟨I⟩2 = 

N(r)∑ δr,(ri−rj )Ij (2.9) 
i,j 

1 
σ1

2 = (
N(r)∑ δr,(ri−rj )Ii 

2) − (⟨I⟩1)
2 (2.10) 

i,j 

1 
σ2

2 = (
N(r)∑ δr,(ri )Ij 

2) − (⟨I⟩2)
2 (2.11)−rj 

i,j 

This function multiplies the value of every pixel in an image with every other 
pixel and performs a weighted average between all the couples of pixels that are at 
the same distance and angle between them. The function builds a matrix in which 
every element corresponds to a certain (r, θ) and its value is the weigthed average 
intensity of all the pixels at that specific distance and angle between them. If that 
distance or orientation has a particularly high amount of, let’s say pixels with high 
intensity, that ACF matrix element will have a high intensity as well. Note that 
not every combination of r and θ is possible, for instance there are no two adjacent 
pixels at 30○. Similarly, in a square image of N ×N pixels, there is only one couple √
of pixels at r = 2N and θ = 45○: the upper right with the lower left. This uneven 
pixel couples distribution is taken into account through the normalization by N(r). 
The variance calculation ensures that statistical exceptions like bad points don’t 
dominate the average value for that (r, θ). 

The radially averaged autocorrelation function ACF (r) is the result of averaging 
the ACF (r) value for all the vectors with the same magnitude r = �r�. It gives 
an idea of the spatial extension of the correlated regions in the image and the 
typical distance between these regions, regardless of their orientation. Conversely, 
the angular averaged autocorrelation function ACF (θ) represents the correlation 
value between any two pixels at a certain angle, regardless of their distance. A 
white noise image will have a flat and close to zero ACF (r) for all distances with 
however a sharp peak at r = 0, because every pixel is correlated with itself. In real 
images, peaks in ACF (r) mean that those are regions where pixel intensities are 
spatially correlated, within the same region (the peak is centered at zero) or with 
neighboring regions (the peak is at a finite value). Moreover, after a proper polar 
to cartesian transformation, one can obtain an actual (r, θ) image of the ACF (r)
in which one can simultaneously observe the radial and angular dependence of the 
correlation in real space and study the shape and orientation of the bright (high 
correlation) and dark (anticorrelation) regions. Fig. 2.21 shows through an example 
the key advantages of this method: we are able to extract the main relevant features 
of any pattern present in an image even if it seems absent at first sight. The ACF is 
still able in the most heavily disordered picture to extract the relevant information 
about the underlying lattice, like the average “atomic” size and shape, as well as the 
lattice axes and the first neighbor distance through the radial average. 
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Figure 2.21: First panel is a simulated 140×140 pixels topography of a square lattice 
of atoms, second panel is the calculated autocorrelation function matrix where the 
rows are different distances and the columns are different angles; third panel is the 
cartesian image reconstructed from the distance and angle information from the 
ACF matrix and fourth panel is the radially averaged ACF in the case of: an ideal 
lattice (a), low disorder (b) and high disorder (c). The color scale is indicated in 
the colorbar on the right hand side of the images. As we see, even in the highly 
disordered case where pattern finding is difficult in the topography image, the ACF 
is able to find the main relevant features and length scales of the underlying lattice. 

The calculation of the statistical ACF (r) is an extremely powerful tool to unveil 
the hidden patterns and symmetries of heavily disordered samples and it has been 
successfully used to understand the role of Coulomb interactions in TiN, a disordered 
metal in the vicinity of a superconductor to insulator transition [123], as well as to 
obtain spatial dependencies related to the opening of the pseudogap in cuprates [124] 
or to find surface patterns in oxide samples or graphene coatings [125, 126]. 

2.4.5 The Lawler-Fujita algorithm 

Strain or pressure are one of the main non-thermal control parameters that can 
heavily modify the band structure of a material and trigger new phases, in 
particular in susceptible materials with competing ground states like iron based 
superconductors or heavy fermions [127, 128, 129, 130, 131]. While experimental 
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research has fundamentally adressed hydrostatic pressure or bulk strain, there can 
be some local effects at the atomic level associated to crystalline defects or impurities. 
Such effects will average out in the bulk measurements, yet they may impact our 
STM measurements by locally altering the electronic properties of the material over 
a nanometric sized region. 

The method proposed by Lawler and Fujita in 2010 [132], known as the 
Lawler-Fujita algorithm, provides the bases for a local strain map calculation in 
STM topography images. The crystalline topography is modeled as the combination 
of several modulations: the atomic modulation Qx and Qy, a possible super-lattice 
modulation due to CDW or similar phenomena Qsup and a slowly varying apparent 
displacement due to long-term and picometer scale piezoelectric drift. We can 
define the slowly varying displacement vector field ū(r)= (ux(r), uy(r)) such that 
un-displaced positions r–ū(r) would form a perfect lattice. The topography then 
takes the form: 

T (r) = T0 [cos (Qx ⋅ (r − ū(r))) + cos (Qy ⋅ (r − ū(r)))]+Tsup [cos (Qsup ⋅ (r − ū(r)))]+ε 
(2.12) 

where ε are extra contributions due to impurities, etc. The fact that ū(r) is slowly 
varying means nothing more that the local disturbance that causes to the lattice is 
small compared to the size of the lattice and the pixel resolution, i.e. that the Bragg 
peaks in the Fourier transform are well defined. Thus we can find a certain scale 
1/Λ such that Λ ≪ �Q �, �Q � over which ū(r) is roughly constant. From this, we x,y sup

can define: 

r ′ −
Λ2

 r−r  

2 x,yTx,y(r) = ∑ T (r ′)e −iQx,y ⋅ ( 
Λ 
e 

′

) ≈ 2
1 
T0e −iQ ⋅ū(r) (2.13) 

r ′ 2π 

where we made use of the fact that ū(r)≈ ū(r’) within inside of Λ. From these 
expressions we can directly extract the displacement field ū(r). Then, the strain 
tensor σ can be calculated from the displacement vector field as follows: 

(
σxx σxy 

∂ux(r) ∂uy(r)
∂x ∂x σ = ) = (∂ux(r) ∂uy(r) ) (2.14)

σyx σyy ∂y ∂y 

In our images, we are usually concerned about the biaxial strain component σb = 
1 (σxx +σyy), i.e. an overall increase (positive) or decrease (negative) in the unit cell 2 
surface, which is the bidimensional equivalent to hydrostatic pressure. We show in 
Fig. 2.22(a,b) the measured topography and corresponding calculated strain map 
that I calculated with this algorithm in a URu2Si2 sample, included in Ref. [133]. 

The partial derivatives get rid of any linear offset in the displacemnt field that 
might come from a steady drift and thus not be related to any intrinsic atomic 
displacement. However, these drifts may computationally manifest as ±2π phase 
slips when the accumulated displacement from the original point exceeds one unit 
cell. Also, this method is completely unaware of the vertical dimension of the image, 
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as it only considers in-plane displacements. We show this in Fig. 2.22(c,d), where 
we compare the obtained strain map in a vertically modulated topography and an 
in-plane modulated topography. 

a b

c

d

Figure 2.22: Adapted from Ref. [133]. (a) Topographic image of a U surface in 
URu2Si2. (b) In-plane strain map of the orange square marked in (a), calculated 
through the Lawler-Fujita algorithm. The color scale of the topography is shown in 
the bottom left part of (a) and ranges from 0 pm (black) to 20 pm (green). The 
strain scale is shown in the bottom right part of (b) and ranges ±5% of the unit 
cell. Note how the defect locally induces a strong strain around it, even though 
there is no net overall strain. In (c,d) we show the schematic representation of a 
real space modulation for atomic displacements in a square attomic lattice. White 
circles show atomic positions without perturbation and green circles with a sinusoidal 
perturbation. In (c) the perturbation is along the c axis, out of plane, and in 
(d) we show a longitudinal modulation along the X axis. In each case we show 
the topography, its Fourier transform and its associated strain map, obtained as 
discussed in the text. Black scale bars are five times the lattice constant long. The 
color scale goes from zero (black) to one (green) in the topographies and from ±10% 
the lattice constant. 
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3 | Superconductivity and
quantum criticality: the

BaFe2(As1−xPx)2 system
 

3.1 The BaFe2(As1−xPx)2 system 

BaFe2As2 is considered the canonical representative of the 122 iron pnictide family 
with the I4/mmm ThCr2Si2-type structure. It is not a superconductor and 
presents an antiferromagnetic and structural transition at TN = 136 K [134]. Like 
we show in Fig. 3.1, this transition is supressed and a superconducting dome 
develops upon chemical doping, which can be either hole doping (Ba1−xKxFe2As2) 
[135, 136], electron doping (Ba(Fe1−xCox)2As2) [137] or even isovalent substitution 
(BaFe2(As1−xPx)2) [138]. The latter has been extensively studied. 

The BaFe2(As1−xPx)2 system is one of the most remarkable examples of quantum 
criticality in an iron based superconductor. The isovalent substitution of As by 
P suppresses the stripe-like antiferromagnetic phase and induces superconductivity 
in a wide doping range from x=0.2 to about x=0.7, with a maximum Tc of 30 
K at the optimal doping x=0.3 [139], where several experiments show [140] that 
there is a quantum critical point (QCP). Unlike most other doped systems, this 
isoelectronic substitution seems to introduce very little disorder to the lattice due 
to the similar atomic radius of As and P and great quality single crystals can be 
obtained throughout the entire doping series, specially in the overdoped regime 
[138, 141, 109]. 

Early transport and quantum oscillations measurements showed that the 
temperature dependence of the resistivity is linear in the normal state close to and 
above the optimal doping, which is a hallmark of a non-Fermi liquid [138, 141]. 
Moreover, specific heat and penetration depth measurements showed a diverging 
quasiparticle effective mass with largely enhanced electronic correlations [140, 142] 
which did not scale with the measured critical field [143], providing additional 
evidence for the existence of a QCP at optimal doping [144, 145]. Furthermore, 
there is recent evidence for strong nematic fluctuations at optimal doping, which 
are decoupled from the structural and magnetic transition, as confirmed by SQUID 
[146] and torque magnetometry [147], ultrafast optical measurements [148], ARPES 
[149], NMR [150] and Raman scattering [151]. 
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Figure 3.1: Extracted from Ref. [64]. Composite phase diagram of the 
BaFe2As2 parent compound into the hole doped (Ba1−xKx)Fe2As2, the electron 
doped Ba(Fe1−xCox)2As2 and the isovalently substituted BaFe2(As1−xPx)2. Note 
that they all share common features like the suppression of the orthorhombic and 
magnetic phase (blue points) and the appearance of superconductivity (red points). 
The isovalently substituted BaFe2(As1−xPx)2 reaches a maximum Tc of 30 K at 
around x =0.3 

Substantial research in the last decade has orbited around determining the nature 
of the Fermi surface and the symmetry of the superconducting gap on entering the 
superconducting dome. The presence of line nodes is confirmed through thermal 
conductivity [152, 153] and ARPES measurements [154, 155, 156], however their 
precise shape and location is not agreed upon. The Fermi surface resembles that of 
most iron based superconductors: three cylindrical hole bands at the center of the 
Brillouin zone and two cylindrical electron bands at the corners. This is represented 
in detail in Fig. 3.3. However, it is not yet clear the exact role that the quantum 
criticality nor the Fermi surface and gap symmetry play in the enhancement of the 
superconductivity in this system. 

Lastly, there are several works that address the vortex matter in BaFe2(As1−xPx)2. 
Bulk microwave cavity [152] and transport measurements [143] under field reveal an 
enhancement in the normal state energy at low temperatures. Some works have 
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visualized the vortex lattice through magnetic decoration techniques [157, 158, 159], 
but there are no studies of the vortex lattice at high magnetic fields whatsoever. In 
this Ph.D. thesis we used the extreme spatial and energy resolution of the STM at 
cryogenic temperatures to study BaFe2(As1−xPx)2. 

Single crystals of BaFe2(As1−xPx)2 were obtained by P. Walmsley and I. R. 
Fisher at Stanford University through a solution growth method described in 
subsection 2.3.3, which is explained in detail in Ref. [109]. 

3.2 STM in BaFe2(As0.7P0.3)2 and BaFe2(As0.56P0.44)2 
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Figure 3.2: In (a) we show a large stepped region taken at 800 mK and zero field 
in the BaFe2(As0.7P0.3)2 sample. In the lower left inset, we plot the unit cell with its 
size and symmetry. In the upper left inset we show the height profile of the magneta 
line, showing that the steps of the large image on the left correspond to half a unit 
cell. When zooming in a flat area (b) marked by a blue square, we observe a square 
lattice of light and dark atoms (blue and green squares) decorated with very bright 
blobs. The interatomic distances match the expected unit cell size at 0.39 nm. In 
the upper right inset of (a), we plot the light/dark intensity histogram of the image 
in (b), which matches a 0.7/0.3 ratio and thus indicates that this is a As/P surface. 
In (c) we show a further zoom into the green area of (b). White arrows indicate 
the atomic directions. The inset shows the Fourier transform, with blue circles 
highlighting the atomic lattice Bragg peaks made by the As/P square lattice. 

We see a topography image obtained in BaFe2(As0.7P0.3)2 in Fig. 3.2. We can see 
that there are large and flat areas, with terraces separated by steps that are half 
the c-axis unit cell height. Inside each terrace, we find clearly a square lattice, 
interspersed with bright blobs. The lattice consists of atomic size features whose 
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intensity varies. In particular, when we make a zoom inside the flat areas, we find 
the periodicity of the As/P lattice. By making a color histogram, we see that the 
number of dark spots is of about 30% and the number of bright spots about 70% of 
the overall histogram. From this, we can conclude that dark spots are P atoms and 
bright spots As atoms. We observed also clean atomically flat surfaces of Ba both 
in BaFe2(As0.7P0.3)2 and BaFe2(As0.56P0.44)2. 

3.2.1 Fermi surface 

The Fermi surface in the BaFe2(As1−xPx)2 system is similar to that of most iron 
pnictides. Quantum oscillations [109, 141] and ARPES [155] measurements, as well 
as DFT calculations [160] have confirmed that it is composed of three cylindrical 
hole bands centered around the Γ point and two more cylindrical electron bands 
centered around the M point. Similarly to previous works [154, 153, 155, 160], we 
will use the folded Brillouin zone of the 2 Fe unit cell in our representations for 
simplicity. In all the results we will show in this Ph.D. thesis, the Ba and As/P 
atomic lattices lay in the ΓM direction, while the Fe lattice follows the ΓX direction. 

Γ

Z

M

Γ

Z

M

BaFe2As2 BaFe2P2

X X

a b

Figure 3.3: Adapted from Ref. [154]. We show the 3D representation of the Fermi 
surface of the two ends of the doping series, BaFe2As2 (a) and BaFe2P2 (b). Note 
that upon P doping, the inner hole band disappears and the outer hole band heavily 
warps around Z. We also marked here the high symmetry points for reference. 

As we show in Fig. 3.3(a) and (b), increasing the P content from the parent 
compound BaFe2As2 all the way to BaFe2P2 has practically no effect on the electron 
sheets, while it causes the inner hole band to disappear and the outer hole band to 
warp and acquire a stronger 3D character. We can thus expect the Fermi surface 
of BaFe2(As0.7P0.3)2 and BaFe2(As0.56P0.44)2 to lay somewhere in between. The 
divergence of the effective mass in the normal state and the non-Fermi liquid behavior 
close to the QCP can’t be predicted from the bare DFT calculated band structure, 
indicating a strong influence of enhanced electronic correlations. 
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3.2.2 Nodal superconducting gap 

In Fig. 3.4 we show the tunneling conductance obtained on the BaFe2(As0.7P0.3)2 

(red) and BaFe2(As0.56P0.44)2 (blue) samples we have measured. We see that the 
tunneling density of states is quite similar, and has strongly depressed quasiparticle 
peaks (as compared to an s-wave BCS conventional superconductor, see Fig. 1.6(a)) 
and a tunneling conductance that is quite large for voltages below the quasiparticle 
peak positions. 
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Figure 3.4: We show the superconducting gap structure at 4.2 K and zero field of 
BaFe2(As0.7P0.3)2 (light red) and BaFe2(As0.56P0.44)2 (light blue). For each curve, 
we have fitted the observed DOS to a distribution of BCS gaps, and plot the 
results in a darker tone of red (BaFe2(As0.7P0.3)2) and blue (BaFe2(As0.56P0.44)2). 
This distribution of gaps is shown in the right inset, where we observe that the 
BaFe2(As0.56P0.44)2 curve has a stronger contribution of smaller gaps, consistent with 
its lower Tc. The left inset shows the derivative of the fitted gap curves, confirming 
that although the quasiparticle peak (i.e. the zeros in the derivative) practically 
coincide, the inflection point of the BaFe2(As0.56P0.44)2 curve (i.e. the maximum of 
the derivative) is shifted to lower bias voltages. 

We see in particular that the superconducting density of states is quite large at 
zero bias, indicating the presence of many low energy excitations. To understand 
these curves, we use the expression described in Equation 1.15. The tunneling 
conductance is compared to a certain distribution of values of the superconducting 
gap. The obtained distribution is shown as a the lower right inset in Fig. 3.4. We 
see that the distribution has one clear peak. The peak provides an average value 
of the superconducting gap. For BaFe2(As0.7P0.3)2 we find 2.5 mV, which taking 
Equation 1.13 corresponds to Tc=30 K, and for BaFe2(As0.56P0.44)2 we find 2 mV, 
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which corresponds to Tc=23 K. Furthermore, we also observe that the zero bias 
tunneling conductance is smaller in BaFe2(As0.7P0.3)2 than in BaFe2(As0.56P0.44)2. 

Such a smeared superconducting density of states, with many states inside the 
superconducting gap, is in agreement with measurements of the superconducting 
gap anisotropy using macroscopic probes [152]. There is a generic agreement that 
there are accidental line nodes in the Fermi surface. Their location and shape is 
however controverted. These nodes stem from the crossing of elliptical bands with 
different signs in the Cooper pair wavefunction. As we show in Fig. 3.5, ARPES finds 
that the nodes are at the intersection between the outer hole band and the top and 
bottom of the Brillouin zone [153]. Other ARPES measurements locate the nodes 
around the bellies of the inner electron sheets [155]. Finally, thermal conductivity 
proposes instead a complex 3D pattern for the crossing of the bands which leads to 
loop nodes in the flattest parts of the outer electron shells as schematically shown 
in Fig. 3.5(c) [154]. 

c

Line nodes

Line nodes
ba

Yoshida et al. Sci Rep 4, 7292 (2014)

Line node

Yamashita et al. PRB 84, 060507(R) (2011)Zhang et al. Nat. Phys. 8, 371–375 (2012)

M

Figure 3.5: (a) Adapted from Ref. [153]. Line nodes are at the intersection of the 
Z plane and the outer hole bands. (b) Adapted from Ref. [155]. Nodal loops are 
around the sharpest parts of the inner electron bands. (c) Adapted from Ref. [154]. 
Nodal loops are around the flattest parts of the outer electron bands. Note that all 
these works consider the optimal doping BaFe2(As0.7P0.3)2. 

Our tunneling density of states measurements are compatible with all these 
proposals. A more detailed angular dependent study can be made by taking a 
careful look on the vortices and on the band structure. 

3.2.3 Vortex lattice 

We measured the vortex lattice below 4.2 K in both samples for several magnetic 
fields up to 7 T. Even at the highest fields, we were relatively far from the critical 
field. In the optimally doped sample, Hc2 ≈ 50 T so 7 T is around 15% of Hc2. In 
the overdoped sample the critical field is Hc2 ≈ 20 T. In this case, 7 T is around 
30% of Hc2. We show in Fig. 3.6 some relevant vortex lattice images obtained 
over large atomically flat surfaces in the optimally doped sample (Fig. 3.6(a)) and 
the overdoped sample (Fig. 3.6(b)). The vortex center was found using a custom 
software [122] based in Delaunay triangulation, and is indicated with a black dot. 
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Figure 3.6: Zero bias conductance maps at different applied magnetic fields in the 
BaFe2(As0.7P0.3)2 (a) and BaFe2(As0.56P0.44)2 (b) samples. The center of each vortex 
is indicated with a black dot. Black scale bars are 50 nm long. The relation between 
the color scale and the tunneling conductance is adjusted in each image to provide 
for maximum clarity in the observation of the vortex lattice. 

The density of vortices with magnetic field is shown in Fig. 3.7 and matches the 
expectation for the Abrikosov hexagonal lattice (green line), although the expected 
intervortex distances for a square vortex lattice are also within the error bars. 
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Figure 3.7: Average intervortex distance, calculated from the triangulated vortex 
positions in BaFe2(As0.7P0.3)2 (red squares) and BaFe2(As0.56P0.44)2 (blue circles). 
The expected intervortex distance for the hexagonal Abrikosov lattice is shown as a 
green line. 

The most remarkable result of these images is that the vortex lattice is highly 
ordered, in particular when compared to similar compounds as Ba0.6K0.4Fe2As2 [161], 
Ca(Fe0.97Co0.03)2As2 [162] or CaKFe4As4 [37]. We can make a Fourier analysis of 
the triangulated vortex positions (Fig. 3.8). From the Fourier analysis, we identify 
a clear tendency to form a square vortex lattice in BaFe2(As0.7P0.3)2 locked to the 
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crystal lattice. In BaFe2(As0.56P0.44)2, we rather observe a hexagonal lattice with 
one axis also alligned to the atomic lattice. 
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Figure 3.8: Zero bias conductance maps (upper panels) and FFTs of the 
triangulated vortex positions (lower panels) at different applied magnetic fields in 
the BaFe2(As0.7P0.3)2 (a) and BaFe2(As0.56P0.44)2 (b) samples. The center of each 
vortex is indicated with a black dot. Black scale bars are 50 nm long. White scale 
bars are 0.02 nm−1 long. The contrast is adjusted in each image to maximize the 
vortices and features. The atomic directions are marked with red arrows. 

This tendency is visible over a wide range of magnetic fields, suggesting 
that the square vortex lattice is related to the quantum critical properties of 
BaFe2(As0.7P0.3)2. We can further explore this finding by calculating the mean 
angle between the two closemost vortex lattice Bragg peaks at each magnetic field. 
We show the result in Fig. 3.9, where we find a very strong indication for a square 
lattice in BaFe2(As0.7P0.3)2. 
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Figure 3.9: We plot the angle δ between the two brightest consecutive spots in the 
FFT of the triangulated vortex positions, showing that vortices tend to arrange 
forming a square lattice in BaFe2(As0.7P0.3)2 (yellow line and shadow) while in 
BaFe2(As0.56P0.44)2 the lattice is hexagonal (green line and shadow). 

3.2.4 Vortex cores at the quantum critical point 

a

Max

Min

b0.1% of HC2 0.5% of HC2

Figure 3.10: We show as a color scale the tunneling conductance vs position 
at 0.05 T (0.1% of Hc2) in BaFe2(As0.7P0.3)2 (a) and at 0.2 T (0.5% of Hc2) in 
BaFe2(As0.56P0.44)2 (b). Arrows mark the atomic in-plane atomic lattice. White 
dashed lines are added as a guide to the eye. White scale bars are 10 nm long. 

A square vortex lattice can be an indicator of some tetragonal anisotropy in the 
Fermi surface, which might affect the vortex core shape too [19, 163, 164, 165, 20]. 
We show in Fig. 3.10 a high resolution comparison of a typical vortex core at low 
fields in BaFe2(As0.7P0.3)2 (Fig. 3.10(a)) and BaFe2(As0.56P0.44)2 (Fig. 3.10(b)). We 
highlight the vortex core with a white dashed line. We do observe a certain square 
component in the optimally doped sample, which tends to align the corners of the 
square with the atomic lattice, marked with white arrows. In contrast, the vortex 
core in the overdoped sample is round. 
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3.2.5 Vortex core size vs magnetic field
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Figure 3.11: We show as red squares (BaFe2(As0.7P0.3)2) and blue dots 
(BaFe2(As0.56P0.44)2) the normalized vortex core size as a function of the normalized 
magnetic field. Estimated error bars are also provided. The field is normalized to 
the upper critical field in each compound. Using the value of Hc2, we obtain ξHc2 . 
The vortex core size is normalized to ξHc2 in each compound. In the inset we show as 
red squares (BaFe2(As0.7P0.3)2) and blue circles (BaFe2(As0.56P0.44)2 the normalized 
conductance as a function of the radius with respect to the center of the vortex for 
different values of the magnetic field. The radius is normalized to the intervortex 
distance, following Equation 1.19. The data are fitted to Equation 1.21 from which 
we can extract the core size values C that are depicted in the bigger graph. 

We now analyze the spatial dependence of the density of states from the center of a 
vortex core outwards. We see already from Fig. 3.10 that the tunneling conductance 
has a weaker dependence as a function of the distance in BaFe2(As0.7P0.3)2 than in 
BaFe2(As0.56P0.44)2. In particular, the yellow colored part close to the vortex center is 
larger in BaFe2(As0.7P0.3)2. To analyze this further, we have taken images of isolated 
vortices at several magnetic fields in each compound. Following Equation 1.21, 
we have plotted the tunneling conductance normalized to its value at the center 
of the vortex and in between vortices for different magnetic fields. From the 
radial dependence of the tunneling conductance we extract the vortex core size 
C. To compare results in both compounds, we normalize the magnetic field to the 
respective critical fields and C to the superconducting coherence length (obtained 
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from Equation 1.19 and the critical field values of Ref. [143]). 
We observe that C is independent of the magnetic field in BaFe2(As0.56P0.44)2, very 

similarly to what was observed in 2H-NbSe1.8S0.2 (see Fig. 1.10(d) and Ref. [34]). 
However, in BaFe2(As0.7P0.3)2 we observe a completely different field dependence. 
We see that the vortex core size first considerably increases with the magnetic 
field, reaches a peak at approximately 2% of Hc2 and then decreases again. This 
anomalous dependence of the vortex core size should be related to the quantum 
critical properties of BaFe2(As0.7P0.3)2. 

3.2.6 Vortex cores in the quantum limit 
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Figure 3.12: In the left panels of (a-d) we plot the zero bias conductance as a 
function of the position in BaFe2(As0.7P0.3)2 at different magnetic fields, indicated 
in the upper left corner. Black arrows provide the path which we follow to trace 
the full tunneling conductance curves vs bias voltage shown in the right panels. We 
provide the vortex core size as a white dashed line and the atomic lattice directions 
with white arrows for reference. The white scale bar is 10 nm long. The color scale 
of the curves provides the approximate position of each curve (comparing to the 
color scale of the left panels). We mark in the right panels with black dashed lines 
the position dependence of the peak in the tunneling conductance observed close to 
the vortex center. In (e) we plot the energy of this peak vs position. In the quantum 
limit, we expect a peak at an energy which is independent of the position. 

We now focus on the vortex core states in BaFe2(As0.7P0.3)2. We observe two low 
bias peaks with small zero bias gap in all the vortices at low fields. This feature is 
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present up to 2% of Hc2, where the vortex core states are less visible in the tunneling 
conductance, probably due to overlap with other vortices. In Fig. 3.12(a-c) we show 
the zero bias conductance maps of vortices at low fields with an energy profile from 
the center outwards, where we see this prominent feature in the center of each core. 
At higher fields we no longer see clear core states (Fig. 3.12(d)). 

In vortices of most superconductors, usually a single zero bias peak is measured at 
its center, which is the result of the contribution of many states [26]. The so-called 
quantum limit is obtained for temperatures T/Tc ≤ 1/kF ξ0 [29, 32]. Taking ξ0 of 2.6 
nm (obtained from Hc2, see Ref. [143]), and kF ≈ 4 nm−1, which is approximately 
half of the Brillouin zone, as shown below, we find T/Tc ≈ 0.13, or T ≈ 4 K. It also 
provides a lowest lying state of 0.4 meV, which is above the thermal smearing at 4 
K. In the quantum limit, we expect a peak in the density of states at the lowest lying 
state energy which should not to vary as a function of the position [29, 167]. Out of 
the quantum limit, there is instead a zero bias peak which splits and moves to higher 
energies when leaving the vortex center [26, 14]. We indeed observe that the peak 
in the density of states has a weak dependence with position at the lowest magnetic 
fields. This suggests that the vortices in BaFe2(As0.7P0.3)2 are in the quantum limit 
at very low magnetic fields and that the quantum limit is lost due to vortex overlap 
when increasing the magnetic field. 

The model of Kogan and Zhelezina [33] is not valid in the quantum limit, because 
it assumes that there is a straightforward relationship between the zero bias density 
of states and the gap magnitude, which is lost in the quantum limit. Thus, we 
can understand the apparent increase in the vortex core size (see Fig. 3.11) as a 
consequence of approaching, at low magnetic fields, the quantum limit. 
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Figure 3.13: In the left panels of (a) and (b) we plot the zero bias conductance as a 
function of the position in BaFe2(As0.56P0.44)2 at different magnetic fields, indicated 
in the upper left corner. Black arrows provide the path which we follow to trace 
the full tunneling conductance curves vs bias voltage shown in the right panels. We 
provide the vortex core size as a white dashed line and the atomic lattice directions 
with white arrows for reference. The white scale bar is 10 nm long. The color scale 
of the curves provides the approximate position of each curve (comparing to the 
color scale of the left panels). 

In BaFe2(As0.56P0.44)2 we observe a much more conventional behavior of the vortex 
core states, similar to 2H-NbSe2 [26]. We observe a single central peak at the vortex 
center which splits and moves in energy together with the position, when leaving 
the vortex center. Two representative results are shown in Fig. 3.13. 
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3.3 Quasiparticle interference measurements
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Figure 3.14: In (a) we show the Fourier transform of the intensity along the ΓX 
direction and in (b) along the ΓX direction as a function of the energy, obtained at 
zero magnetic field. Band dispersion relations are highlighted by dots, with error 
bars discussed in the text. The relevant q-vectors are labelled from q1 to q4. In (c) we 
show the Fourier transform of the tunneling conductance within the first Brillouin 
zone of the Fe atomic lattice, marked by black dashed lines, at zero energy. The 
Bragg peaks of the As/P lattice are marked with red circles. The lattice directions 
are marked by colored arrows. In (e) we show schematically the band structure of 
BaFe2(As0.7P0.3)2. Bands are shown by colored lines, with the first Brillouin zone 
of the Fe lattice marked by black dashed lines. Arrows mark the scattering vectors 
we identify in our experiment. These are shown in (d), where we plot the Fourier 
transform (left panels) and the real space conductance maps (right panels). Note 
that the first Brillouin zone of the Fe lattice is also marked by black dashed lines 
in the FFTs. White scale bars are 20 nm long. We highlight by arrows the main 
scattering vectors. 

A more comprehensive understanding of the influence of quantum criticality in the 
superconducting properties can be obtained when studying in detail the tunneling 
conductance maps obtained in BaFe2(As0.7P0.3)2. We performed spectroscopic 
measurements at zero field and 800 mK in the atomically flat region shown in the 
upper right panel of Fig. 3.2. We show the main results in Fig. 3.14. Note that the 
studied As/P surface is decorated with very bright blobs corresponding to surface 
impurities or Ba adatoms. These spots dominate the conductance intensity and 
obscure the underlying surface signal, so we have minimized their effect by neglecting 
any wave vector smaller than the average interimpurity distance, in reciprocal space. 

In Fig. 3.14 we show the result of our experiments. We identify scattering from 
the hole pockets centered around Γ (q1 and q2). Both have a slight dispersion with 
energy, compatible with an effective mass of around 2 me for q1 and 3 me for q2. This 
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is in line with previously reported effective masses for the hole bands measured with 
ARPES (Table I in Ref. [168]). Furthermore, we observe a ring-like scattering for 
q1, which suggests that the underlying band is circular or quasi-circular. For q2, we 
observe scattering at four Bragg spots, suggesting that the band has flat portions. 
We also identify electron-like scattering in the outer bands. We can see that q3 

joins diagonal sections of the inner electron band, with a dispersion too narrow to 
calculate an effective mass. q3 is rather spread out in reciprocal space, although 
there is a certain directional dependence. This suggests that there are portions 
of the band structure with different dispersion relations, favoring scattering along 
certain directions. An interesting scattering vector is q4. Here we identify scattering 
that is electron-like and has four clear Bragg peaks, with an effective mass of around 
9 me. Previous specific heat and dHvA measurements situated the effective mass 
of the electron bands at around 10 me (Fig.5 in Ref. [142]). We can associate 
this to scattering between flat portions of the outer electron band, as schematically 
shown by the orange arrow in Fig. 3.14(e). While there are indications for gap 
opening in all bands Fig. 3.14(a,b), the most visible difference at energies below the 
superconducting gap occurs in the q4 scattering vector. 
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Figure 3.15: (a) Sketch of the gapped Fermi surface, only including the outer 
electron band associated with q4. In it, we mark the gap openings as well as the 
nodal regions. (b) Calculated JDOS of the Fermi surface shown in (a). (c) QPI 
intensity pattern obtained in the experiment at 0 mV, with the color scale adjusted 
to highlight the main features. The four petal structure corresponds to intraband 
scattering. Note that in (a-c) the first Brillouin zone of the Fe lattice is marked by 
black dashed lines. 

We can analyze this in more detail by seeking for Fermi surfaces that can lead 
to the pattern we observe in the figure Fig. 3.14(c), related to the q4 wave vector. 
The result is shown in Fig. 3.15, where we calculate the JDOS of the outer electron 
bands. We see in particular that in order to produce the pattern observed in the 
experiment, the round square shaped outer electron band has a gap open along 
the ΓM directions, which coincide with the As/P lattice directions. Along the ΓX 
directions the gap is closed, suggesting that along the Fe lattice directions there are 
nodal points. 
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3.4 Conclusion 

The BaFe2(As1−xPx)2 system is particularly well suited to study the interplay 
between unconventional superconductivity and quantum criticality. We performed 
the first microscopic approach to the problem with STM measurements of 
the LDOS at low temperatures in two samples, BaFe2(As0.7P0.3)2 at the QCP 
and BaFe2(As0.56P0.44)2 in the overdoped regime far from the antiferromagnetic 
transition. We found large atomically flat surfaces with similar topographic 
characteristics to other Ba based 122-type compounds, and a V-shaped 
superconducting gap which is consistent with nodal superconductivity. 

We obtained the first images of the vortex lattice and found that it is well 
ordered at long ranges, which is uncommon for pnictide superconductors and 
reinforces the idea that the P substitution introduces very low disorder to the 
lattice. Moreover, we found a square vortex lattice and square vortex cores in 
BaFe2(As0.7P0.3)2, as opposed to the round vortices and regular hexagonal lattice 
measured in BaFe2(As0.56P0.44)2, indicating that the gap anisotropy and nodal 
character of the superconducting gap is stronger close to the QCP. 

The field dependence of the vortex core size in BaFe2(As0.56P0.44)2 is that of a 
single band superconductor in the dirty limit with C ≈ ξHc2 for the whole field 
range. However, we found a surprising field dependence of the vortex core size in 
BaFe2(As0.7P0.3)2, which first raises from 2ξHc2 to a maximum of 3.5ξHc2 at 2% of 
Hc2 before dropping to ξHc2 above 15% of Hc2. We associate this to the passage into 
the quantum limit, when the system is close to the quantum critical point and at 
very low magnetic fields. 

Finally we performed spectroscopic measurements in BaFe2(As0.7P0.3)2, and found 
several dispersive features in the QPI intensity which we could trace to different 
scattering events between Fermi sheets. From our study of electron scattering, we 
identify the direction of gap nodes and the size of the effective masses close to the 
quantum critical point. 
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4 | Feedback driven AC

Josephson effect
 

There is a strong interest in superconductor science to measure not only the 
density of states of a superconductor but also the coupling between order parameters 
[169, 170, 171]. The Josephson current is proportional to this coupling and can be 
probed with atomic precision by using a superconducting tip in a STM setup at low 
temperatures [172]. This approach is however extremely challenging as the signal 
strength is largely decreased in the tunnel regime. Moreover, new phenomena might 
play a significant role under such conditions like the influence of the electromagnetic 
environment [173] or the spatial dependence of the Cooper pair density [174, 80]. In 
addition, as I will show below, there are yet some unexplained experimental results 
like the observed hysteretical behavior of the tunnel Josephson signal [175]. 

In this chapter I will present results of high resolution measurements of the 
Josephson current in Pb–Pb, Pb–NbSe2 and Al–Al junctions made with the STM. 
I will in particular focus on the Pb–Pb junctions, where my measurements unveil a 
new oscillatory behavior that sets in above the critical current and is also present 
in Pb–NbSe2 and Al–Al. We can understand this new AC Josephson behavior as a 
connection between the phase dynamics of the Josephson junction and the retarded 
feedback induced by the electric circuit connected to the junction. 

4.1 Dynamic Josephson effect observed with STM 

4.1.1 DC Josephson effect 

As previously introduced in section 1.4, the Josephson effect consists of a current 
flowing at zero bias between two superconducting electrodes. The current is, 
according to the first Josephson relation (Equation 1.25), due to the established 
phase difference between both electrodes. Careful studies of the Josephson effect 
at atomic scale [176, 177, 178, 174, 80] have shown that the Josephson current is 
strongly influenced by thermal fluctuations. This reduces the size of the zero bias 
current and induces a small but finite slope, which implies that thermal excitations 
produce a fluctuating phase between both electrodes when measured with a STM. 
As tip and sample separate (see Fig. 4.1), we observe that the slope and zero bias and 
the current at the peak both decrease. This shows that the maximum supercurrent 
flowing between both electrodes becomes smaller. This effect has been studied in 
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depth in Refs. [179, 177, 173, 180] and is due to thermal fluctuations and the 
influence of the environment. However, literature also shows that above the current 
peak, there is a voltage range with a shoulder plateau, as we also see (Fig. 4.1(b)) 
in our experiments. 
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Figure 4.1: (a) The tunneling conductance vs bias voltage is plotted as colored lines. 
The tunneling current is shown in the inset. A zoom into the tunneling current vs 
bias is shown in (b). The bias voltage is ramped down. The color indicates the 
tunneling resistance of each curve, following the legend in (b). 

This shoulder observed in Fig. 4.1(b) has been observed previously in several 
experiments [175, 181, 182]. It remained however without explanation. During the 
experiments I performed in this Ph.D. thesis, I observed a time dependent tuneling 
current in the bias voltage range where the shoulder appears. Actually, as we show 
below, the shoulder is the time averaged tunneling current, and is caused by a 
surprising time-dependent behavior which we have characterized and understood 
thanks to comparison with theory. 

4.1.2 Low frequency AC Josephson effect 

To understand the time dependent AC signal, we first made a thorough 
characterization, by following the current as a function of time. For reasons that will 
become clear later on, we plot the voltage through the junction, which is given by 
the measured current divided by the resistance of the junction and an added offset. 

At zero or low bias voltages (red point in Fig. 4.2(a) and red line in Fig. 4.2(b)), we 
observe essentially a randomly fluctuating current and voltage. When we reach the 
maximum Josephson current, we observe a strong time dependence of the current 
and voltage. At low bias, the time averaged voltage is very close to zero. However, 
when the voltage bias is increased, we observe peaks that appear in irregular intervals 
in time (orange point in Fig. 4.2(a) and orange line in Fig. 4.2(b)). When further 
increasing the bias, the peaks become more numerous (yellow point in Fig. 4.2(a) 
and yellow line in Fig. 4.2(b) and (c)), until we observe a well established oscillatory 
behavior (blue point in Fig. 4.2(a) and blue line in Fig. 4.2(b)). 

66
 



Chapter 4 Feedback driven AC Josephson effect
 

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
-3

-2

-1

0

1

2

3

T
u
n

n
e

lin
g
 c

u
rr

e
n

t 
(n

A
)

Voltage (mV)

-4 -2 0 2 4
-100

-50

0

50

100

T
u
n
n
e

lin
g

 c
u

rr
e

n
t 
(n

A
)

Voltage (mV)

a b

0 10 20 30 40 50
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

V
o
lt
a
g
e
 (

m
V

)

Time (ms)

‹ V(t) › = 0.02 mV

c

T = 150 mK

RT = 40 kΩ

Pb – Pb

0.00 0.05 0.10 0.15 0.20 0.25
0

5

10

15

20

25

Voltage (mV)

F
re

q
u

e
n

c
y
 (

k
H

z
)

0.0

0.2

0.4

0.6

0.8

1.0max

min

0 1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

V
o
lt
a
g

e
 (

m
V

)

Time (ms)

 0.30 mV

 0.25 mV

 0.14 mV

 0.04 mV

 0.02 mV

 0.01 mV

 0 mV

d

0 2 4 6 8

0.0

0.2

0.4

0.6
  max

  min

Bias current (nA)

O
s
c
. 
A

m
p
lit

u
d
e

 (
m

V
)

Figure 4.2: (a) In the main panel we show the tunneling current vs bias voltage close 
to zero bias. Data are shown in blue (ramp up) and violet (ramp down). Colored 
points indicate locations at which we trace the time dependence shown in (b) using 
the same colors. In the upper left inset we show the complete I-V curve up to the 
superconducting gap. In the lower right inset, we show as red points the minimum 
and as black points the maximum value of the oscillation. We plot as a dashed line 
the resistance of the junction outside of the Josephson regime and highlight with 
a colored background the three main regions of behaviour: stable (red), bistable 
(blue) and periodic (green), which we will discuss later in the text. The resistance 

hof the junction is ≈0.3G0, with G0 = 2e the quantum of conductance. Curves are 2 

taken at zero magnetic field and at a temperature of 150 mK. (b) Voltage vs time at 
the locations given by the colors in the main panel of (a)). Curves are shifted along 
the y-axis by 0.25 mV for clarity. The time averaged voltage goes from zero (red) to 
0.3 mV (magenta) as indicated in the legend. (c) Voltage vs time over a larger (50 
ms) time window. The time averaged bias voltage is of 0.02 mV, as indicated in the 
legend. (d) We show as a colormap the amplitude of the Fourier transform of every 
voltage vs time curve taken in this experiment. Note that the ones depicted in (b) 
are just a mere representative selection and the actual resolution in voltage is much 
higher. We identify up to three main harmonic branches which convergently start 
at zero and increase their frequency logaritmically up to the critical voltage where 
the shoulder plateau disappears, and with it the oscillation. 
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The Fourier analysis of the time dependent voltage is shown in Fig. 4.2(d). We 
observe that the oscillatory behavior is well established at a clear frequency of 7.2 
kHz. The Fourier transform also shows harmonics of this frequency, indicating that 
the oscillations are not sinusoidal, but rather have a triangular shape. 
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Figure 4.3: (a) Average lifetime (blue) and switching probability (red) of the lower 
(squares) and upper (circles) switching points. We confirm both phenomena to 
be stochastic as the lifetime decays exponentially with voltage (i.e. τ−1 increases 
linearly in a logarihtmic scale). In (b) we measure the upper switching point at 
three temperatures up to 1.2 K, finding that while the switching voltage remains 
relatively constant, the event dispersion (inset) increases with temperature. 
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Figure 4.4: Dependence of the voltage oscillation with the temperature at 0.02 mV 
in the low bias stochastic regime (a) and at 0.25 mV in the continuous oscillation 
regime (b) close to the upper critical voltage when the oscillation disappears. The 
tunnel resistance for all curves is 40 kΩ. Increasing temperature only decreases the 
amplitude of the signal, whereas the main features like the shape asymmetry in (a) 
and the frequency dependence in (b) are temperature independent. 
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To better characterize this behavior, we have monitored the onset and 
disappearance of the oscillations. For the onset, we have counted the number of 
bursts appearing in a fixed period of time as a function of the bias and calculated 
the average time between bursts τ . We show the result in the left side of Fig. 4.3(a) 
(lower switching point). We see that we obtain a rate which increases with bias 
voltage. From the rate, we can also obtain a probability, following Ref. [183]. The 
disappearance of the oscillatory behavior occurs abruptly when increasing the bias. 
However, the position in voltage for this disappearance is not exactly the same in 
each ramp. We have thus performed 10000 ramps and made a histogram of the 
number of times we observe the exit at a given bias. We see the result in the right 
side of Fig. 4.3(a) (upper switching point). Using again Ref. [183] we can calculate 
a switching rate, which also increases with bias voltage, and from it the switching 
probability. When increasing the temperature (Fig. 4.3(b)), we observe that the 
histogram broadens, suggesting thermally activated behavior. 
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Figure 4.5: In (a) we show the time dependent voltage across a junction with the 
same resistance as in Fig. 4.2 (40 kΩ) and at a temperature of 3 K. In (b) we show 
the Fourier transform of the time dependence, with the intensity given by the bar on 
the right. In (c,d) we show the same, for a temperature of 150 mK and a junction 
with a resistance of 125 kΩ. 
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The behavior of the Josephson signal thus remains with qualitatively the same 
features when increasing temperature, albeit with reduced critical values above 
1.2 K, as shown in Fig. 4.5(a). Increasing the tunneling resistance decreases the 
Josephson signal, but oscillations can be easily detected, as shown in Fig. 4.5(c). 
The absence of higher order harmonics in the latter experiment can be associated 
to a decrease in the bandwidth due to the increasing resistance. 
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Figure 4.6: In (a) we show the Josephson current in a STM made with a tip of Pb 
and a sample of 2H-NbSe2. The colored dots correspond to the positions where we 
have acquired the time dependent voltage shown in (b). Curves are shifted for clarity 
by 0.25 mV on the vertical axis. The time averaged voltage is given in the legend. 
Similarly to Fig. 4.2(a), in the upper left inset we show the complete IV curve up 
to the superconducting gap. Also in the lower bottom inset we show the maximum 
(black) and minimum (red) of the oscillations and highlight the same three regimes 
as before in the same colors. In (c), (d) we show the same measurements as in (a) 
and (b), but with tip and sample of Al. In this case, in (d) curves are shifted only 
50 µV vertically. 

70
 



Chapter 4 Feedback driven AC Josephson effect
 

4.1.3 Low frequency AC Josephson effect in other junctions 

We performed comparable measurements in experiments on Al–Al and 
Pb–2H-NbSe2. We show the results in Fig. 4.6. The Tc of 2H-NbSe2 is very similar 
to the Tc of Pb and we observe very similar features as with Pb. In Al, the energy 
scales are reduced due to the lower Tc with respect to Pb, and again the oscillatory 
behavior and frequency dependence are qualitatively the same as with Pb. 

4.2 Model for the low frequency AC Josephson effect 

The classical RCSJ model presented briefly in subsection 1.4.2 cannot account for the 
observed behavior. With a finite bias current Ib, the model produces an oscillatory 
behavior. For low values of the parameter η = Ib/Ic, which is the normalized bias 
current, its associated frequency ωP can be approximated as: 

ωP =
 ω0 (1 − η2)

For the measured values of our experiment, the time scales associated to the 

1
4 =
 

2π
 
Φ0 

(1 − η2)
1
4 (4.1)
 

oscillating Josephson current is around 300 GHz, which is far beyond our measurable 
bandwidth and well above the detected low frequency oscillation measured at 7.2 
kHz. Thus, in collaboration with Prof. Alfredo Levy Yeyati and Dr. Samuel 
Escribano, we present here an extended feedback delayed RCSJ model. 

4.2.1 Delayed feedback-driven RCSJ model 

Our circuit is shown in Fig. 4.7(a). The behavior of the I-V converter or 
transimpedance amplifier is important. From the OP amplifier equations, we know 
that the voltage in both inputs to the OP is the same. As one input is grounded, this 
produces a low impedance connection between one side of the junction and ground. 
The junction is biased by a current. The OP amplifier provides a feedback current 
through the resistor RF which is exactly equal to the current flowing through the 
junction. The output of the circuit is then the voltage at the point Im, which is 
proportional to the current through the junction. The current through the junction 
follows the RCSJ model, but the junction is connected to the feedback circuit of the 
OP amplifier. The feedback is delayed on a time scale which is given by the resistor 
RF and the circuit capacitance in parallel to this resistor (not shown inFig. 4.7(a)). 
The latter includes, in particular, the capacitance to ground of the wiring into the 
cryostat. The RCSJ equation with a feedback term is given by: 

dx2 
−

1
= [sin(x1) + x2 + i] + k[x2(t − t∗) − x2(t)] (4.2)

dτ β 

being t∗ the time constant of the feedback circuit and k a coupling term. When 
the voltage is zero below the critical current, x2 = 0 and we yet again recover 
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Equation 1.25, the first Josephson relation. However, above the critical current 
we can still have a solution with zero bias voltage. If at a certain time window, 
x2(t − t∗) − x2(t) < 0, then adding the additional feedback term is equivalent to 
reducing the current i in Equation 4.2. Thus, there is a range of bias currents i > 1 
above the critical current of the junction where the feedback effectively reduces the 
tilt in the washboard potential: the system oscillates between a state where the 
feedback reduces the tilt and a state in which it increases the tilt (see Fig. 4.7(b)). 
The oscillations induced by the feedback occur over a period t∗. 
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Figure 4.7: (a) Simplified circuit used in a STM setup. A bias is applied to a 
superconducting tip (grey vertical triangle) and the tunneling current flows into a 
superconducting sample (grey horizontal bar). We model the tip-sample junction 
through a standard RCSJ model, so that the blue dotted boxes are equivalent. The 
current flowing through the circuit is measured using an operational amplifier (grey 
horizontal triangle) in a current-to-voltage converter configuration. The operational 
amplifier’s feedback mechanism nulls both entrances, in such a way that the current 
flows through RF to ground, creating a voltage at the output which is proportional 
to the tunnel current. In presence of an oscillating current, the feedback responds 
with a delay, determined by RF and the capacitance of the circuit. (b) As we show 
in the text, the feedback periodically eliminates and enhances the bias current, i.e. 
the tilt in U (red arrow) at a frequency ωF . (c) We show in light blue x2(t) obtained 
from Equation 4.2 for the parameters indicated in the text and a current slightly 
above Ic. We show in dark blue the term (x2(t−t∗)−x2(t)) in Equation 4.2. We have 
chosen the units at the y-axis in such a way that the result of RCSJ without feedback 
is 1. We see by this comparison that the feedback oscillates between a state where it 
provides twice the voltage across the junction as compared to the non-feedback case, 
and a state where it exactly compensates the tilt of the washboard potential and 
leads to zero voltage across the junction. Thus, the feedback periodically returns 
the junction to the zero voltage state above the critical current. 

As an example, in Fig. 4.7(c) we plot x2, i.e. the voltage, as a function of time 
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normalized to τ . The feedback is divided by k. We use k = 2, β = 4 and t∗/τ = 200. 
We can see that x2 switches between zero voltage where the feedback term is exactly 
equivalent to i in Equation 4.2, and a finite voltage state where the magnitude of x2 

is twice the one obtained in absence of feedback as the feedback term enhances the 
tilt of the washboard potential. 

Equation 4.2 has regimes with different degrees of stability and, adding 
temperature fluctuations, provides qualitatively the same results as we observe in 
the experiment. 

4.2.2 Dynamics at the Josephson and the feedback frequencies 
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Figure 4.8: (a) Time-averaged I-V curve for the parameters indicated in the graph, 
where we can identify the main features observed in the experiment. In (b) we show 
as black dots the maximum and minimum values of the voltage across the junction 
and identify three different branches which correspond to different trajectories in 
the I-V plane, plotted in the upper part of the panel. Note that the color palette 
for each branch is the same we employed previously in the insets of Fig. 4.2(a) and 
Fig. 4.6(a) and (c). In the next panels we show a long (c) and short (d) time ranges 
taken at the colored dots marked in (a). 
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We show in Fig. 4.8(a) the time-averaged current and bias of the junction with the 
parameters indicated in the panel (calculations made by Samuel Escribano and A. 
Levy Yeyati, as well as by David Perconte). We can reproduce the main features 
observed in the experiment, like the hysteresis and the shoulder plateau after the 
peak. In a similar way to Fig. 4.2, we choose some fixed bias points and show the 
time evolution in Fig. 4.8(c) and (d). Note that Fig. 4.8(d) is just a zoom inside 
the red square region marked in Fig. 4.8(c). We reproduce again the main features 
of the voltage vs time curves, like the stochastic bursts right after the peak and 
the constant oscillation above the critical current, which suddenly disappears at an 
upper switching point. Finally, in Fig. 4.8(b) we show as black dots the maximum 
and minimum value of the voltage with time and obtain the same three differentiated 
regions we identified in the inset of Fig. 4.2(a). In order to discuss this behavior and 
avoid thermal noise we set here T=0. At low bias, we observe a stable DC Josephson 
current with zero voltage through the junction. At intermediate bias, above the 
critical current, there is a bi-stable behavior. The junction switches between a state 
with zero voltage and a state with a finite voltage. At still higher bias values, we 
find periodic oscillations at high frequencies (not shown in Fig. 4.8(b)). 

4.3 Conclusion 

The observed new AC Josephson effect is a surprising connection between high 
frequency Cooper pair quantum oscillations, thermal noise and low frequency 
electronics. It is completely reproduced by the RCSJ model with a delayed feedback 
term added. First, it fully explains the shoulder plateau observed previously in DC 
measurements as a consequence of time averaging the newly observed AC behavior. 
This validates the measurement of the shoulder plateau as a measurement of the local 
Josephson coupling. Second, it provides a stable Josephson coupling at a bias that is 
well above the critical current. It should be interesting to explore this effect further, 
as it might be useful in the design of SQUID or high frequency electronics. As we 
show in Fig. 4.8(c), when the junction switches, the current is oscillating at very high 
frequencies in the position where the DC voltage is finite. Therefore, the existence 
of low frequency oscillations is a direct evidence of the high frequency AC Josephson 
oscillations, which can be detected by measuring a low frequency signal. The 
junction thus acts as an intermediate frequency amplifier, allowing the measurement 
of high frequency Josephson oscillations at a fixed frequency in the kHz range. We 
can speculate that nanofabricated rings with two parallel junctions (having similar 
resistance and capacitances as the ones obtained in STM) coupled to a feedback 
circuit might also show this novel feedback behavior at low frequencies. We did not 
investigate this possibility, but we can anticipate a low frequency (radiofrequency) 
modulation of the critical current. And third, it allows for measuring the Josephson 
effect at the atomic scale by measuring the signal at exactly one frequency, using 
a sharp notch filter after the I-V converter. This should considerably improve the 
signal to noise ratio in Josephson Scanning Spectroscopy. 
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5 | Correlations and bound
states in 2H-NbSe1.8S0.2 

Transition metal dichalcogenides have been traditionally studied in depth using 
STM. The layered structure generally provides excellent surfaces where STM 
can be easily used to measure the atomic structure and the density of states. 
As shown in the introduction, superconductivity and vortex lattices have been 
extensively studied, in 2H-NbSe2 as well as and in other similar layered compounds 
[76, 14, 184, 185, 79, 24, 26]. Very recently, it has been shown that few layers of 
these systems also show superconducting properties. The critical temperature is 
strongly reduced in single layers of 2H-NbSe2 [75] and enhanced in single layers of 
2H-TaSe2 and 2H-TaS2 [186, 187], sometimes offering radically new superconducting 
properties, such as heavy fermion [188] or Ising superconductivity [189]. Whenever 
STM measurements of the superconducting gap are available, these share a seemingly 
unavoidable extreme smearing [190, 191], with tunneling conductance having a 
large zero bias density of states and small coherence peaks, and which contrasts 
to the clean s-wave tunneling conductance curves ubiquitously obtained in the bulk 
[76, 14, 184, 185, 79]. This situation is very different also to results in another 
single layer superconductor, FeSe [192], which shows a zero density of states at low 
energies. These results raise the question for the origin of the finite density of states 
at the Fermi level in transition metal dichalcogenides. 

On the other hand, it is well known that superconductivity is depressed through 
the exchange interaction between Cooper pairs and magnetic impurities and through 
the orbital interaction that leads to vortices. Both perturbations induce a finite 
density of states inside the superconducting gap. In vortices, the superconducting 
density of states is often not zero close to the vortex center due to the formation of 
in-gap CdGM states [25, 76, 14]. 

Similarly, the so-called gapless state can occur in presence of magnetic impurities 
[39, 193]. This gapless superconductivity occurs for a very large concentration of 
magnetic impurities [42]. Isolated magnetic impurities locally induce in-gap YSR 
states [194, 50, 195, 196, 197, 198]. The influence of reduced dimensionality in 
superconductors with a small amount of magnetic impurities has not been studied. 

Recently, it has been shown that chains of magnetic atoms present a peak at zero 
energy that has been associated to Majorana excitations [199, 200, 201]. To be able 
to identify and use such unconventional states, it is important to characterize and 
understand the behavior of YSR states in the superconductor. Here in particular 
we address the issue of reduced dimensionality and the influence of the vortex 
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lattice. I will show that reduced dimensionality produces significant modifications 
of the superconducting density of states in the whole sample, leading to gapless 
superconductivity at very small magnetic impurity concentrations. To this end, 
I will address the behavior of isolated magnetic impurities in the superconductor 
2H-NbSe1.8S0.2. I will also study the mutual influence of magnetic impurities and 
vortices in detail, both in 2H-NbSe2 and 2H-NbSe1.8S0.2. Magnetic impurities lead 
to a axially asymmetric superconducting density of states around vortex cores. 

5.1 YSR states in 2H-NbSe2: state of the art 

As introduced in subsection 1.2.5, isolated magnetic impurities produce YSR bound 
states in the superconducting gap. The position of the peaks as well as the spatial 
distribution of such states provides useful information about the magnetic and 
electronic properties of the material [50, 202]. 

a b

15 nm

Figure 5.1: Adapted from Refs. [50, 202]. Experimental results of STS 
measurements on 2H-NbSe2 (a) and La(0001) (b) with magnetic impurities. 

We see in Fig. 5.1(a) that the impurity on a 2H-NbSe2 surface shows a 
characteristic sixfold shape [50]. We also show results in La(0001) surface in 
Fig. 5.1(b) [202]. The oscillatory behavior of the YSR density of states close 
to impurities is strongly linked to the band structure: along certain directions, 
the wavefunction extends to longer distances, providing the extended patterns we 
see in Fig. 5.1(a,b) along the arms of the star. These directions coincide with 
positions where the band structure has particular properties [50, 202]; for instance in 
2H-NbSe2, the sixfold star shape follows the direction of the CDW, suggesting that 
along these directions there is a stronger interaction with the magnetic impurity, 
probably due to a stronger density of states [203]. This is further analyzed in great 
detail in experiments where Fe is deposited in different places with respect to the 
CDW [198]. An additional interesting work studies in detail the influence of the 
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two band character of 2H-NbSe2 in the shape of the density of states [197]. In La, 
the directions coincide clearly with flat portions of the Fermi surface [202]. These 
provide enhanced electronic interactions and have been shown to strongly influence 
scattering also on the normal state [120]. On the other hand, coupling between close 
lying impurities in 2H-NbSe2 was studied in Ref. [196]. Other systems presenting 
a strong influence of the crystal lattice in YSR states are Nb [204] and β−Bi2Pd 
[205, 206]. 

Here we study 2H-NbSe2 doped with S in 10% of the Se sites, i.e. 2H-NbSe1.8S0.2. 
These samples also contain embedded Fe impurities below 150 ppm. We show 
that the level of disorder introduced by the small amount of S doping significantly 
enhances the density of states in between isolated magnetic impurities, leading to 
gapless superconductivity. By comparing the oscillatory patterns around isolated 
impurities with band structure calculations made by the group of J. Baldoví in 
Valencia, we see that YSR oscillatory patterns occur in certain directions in which 
the density of states is enhanced. Calculations show that this enhancement is due 
to the effect of randomly distributed S. The S dopants, being located at different 
positions in each layer, produce a reduction of the dimensionality, making each layer 
different from its neighbor. The reduced dimensionality allows for the observation 
of certain wave vectors in the YSR states in 2H-NbSe1.8S0.2 that are absent in 
2H-NbSe2. We attribute this to the enhanced DOS along certain band structure hot 
spots appearing due to the reduced dimensionality in 2H-NbSe1.8S0.2. Furthermore, 
we also analyze the effect of magnetic impurities in the CdGM vortex core states. 

5.2	 Spatial extension of YSR states in 2H-NbSe1.8S0.2 at zero 
magnetic field 

5.2.1 Influence of S doping 

We show in Fig. 5.2(a) a YSR impurity in pure 2H-NbSe2. We identify the sixfold 
pattern described previously (see Fig. 5.1(a)). However in 2H-NbSe1.8S0.2, when we 
measure Fe impurities we find instead a threefold pattern, as shown in Fig. 5.2(b). 

We can compare this result with theoretical calculations, which were made by J. 
Baldoví in Valencia and are described in Ref. [32]. We show the atomic positions 
of Nb and Se in 2H-NbSe2 in Fig. 5.2(c) and of Nb, Se and S in 2H-NbSe1.8S0.2 in 
Fig. 5.2(d). We see that S (yellow atoms in Fig. 5.2(d)) produces slight distortions 
in the atomic positions in each layer. We also see that the position of each S atom 
in a layer is random and that those lying close to the Fe impurity (red blob in 
Fig. 5.2(c,d)) influence the environment of the Fe mpurity. A calculation of the spin 
density at the impurity (red for spin up and blue for spin down in Fig. 5.2(c,d)) 
brings more insight. We see that the exchange coupling between magnetic Fe and 
the neighboring atoms occurs mainly with Nb atoms in pure 2H-NbSe2. As we 
describe below, almost all Fermi surface sheets are derived from Nb orbitals (see 
Fig. 5.5(c) and (d)). The exchange coupling in 2H-NbSe2 is antiferromagnetic and 
has a sixfold symmetry, which is very similar to the sixfold symmetry of the YSR 
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state. This suggests that the anisotropy of the exchange coupling is influenced by the 
anisotropy of the band structure. In 2H-NbSe1.8S0.2, the exchange coupling is also 
antiferromagnetic and occurs with both Nb and Se. This implies a threefold exchange 
anisotropy. In addition, because of the Se by S substitution, the exchange coupling 
has a slight additional anisotropy (towards the top in the upper panel of Fig. 5.2(d), 
where S atoms are located in the regions with smaller exchange coupling in the 
layer immediately below, as shown in the lower panel of Fig. 5.2(d)). Therefore, the 
distribution of S atoms modifies the in-plane anisotropy of the exchange coupling of 
the Fe impurities, as we show in Fig. 5.2(b). 

15 nm

0. 25

0

0.3 mV 0.3 mV

2H-NbSe2 2H-NbS0.2Se1.8

a b c d

Figure 5.2: Measured tunneling conductance maps at a Fe impurity in 2H-NbSe2 

(a) and in 2H-NbSe1.8S0.2 (b). White arrows provide the crystalline directions of the 
atomic Se lattice and white scale bars are 2 nm long. (c) Spin density isosurface 
of 2H-NbSe2 and (d) of 2H-NbSe1.8S0.2) obtained from DFT+U calculations. Red 
stands for spin up and blue for spin down charge density. The isosurface is plotted 
for an imbalance by 0.002 of the spin density. The Fe atom (not shown) is located on 
the red spot, substituting a Nb atom. Se atoms are orange and Nb atoms ochre. We 
represent the two uppermost unit cells from the top. S atoms are located randomly 
in the layers below, shown in the lower panel of (c) and (d). Calculations are made 
on four Nb-Se and Nb-Se-S layers, using 4 × 4 × 2 sized slabs. 

5.2.2 Oscillatory pattern of YSR states in 2H-NbSe1.8S0.2 

To further analyze the origin of the coupling that leads to the YSR states, we can 
investigate the oscillatory behavior in detail. To this end, we have to take a closer 
look on a large image, showing a couple of Fe impurities and study the tunneling 
conductance at many bias voltages with great detail. In each case, we make a C6 
symmetrization of the FFT, to unveil more clearly the wave vectors of the oscillations 
in the YSR states. These results are presented in Fig. 5.3. 
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Figure 5.3: (a) Topography of a small field of view in 2H-NbSe1.8S0.2 (scale bar 
given in the bottom right part of the panel). Color scale corresponds to height 
changes, following the scale bar on the bottom left. (b-f) Tunneling conductance 
maps in the same field of view, for the bias voltages marked at the top right part. 
The tunneling conductance color scale is given by the bar on the bottom left. We 
select a few profiles and plot these as insets (points are data from the image and the 
lines are a guide to the eye, dark colors are at a positive bias and light colors at a 
negative bias). (g) 2D-FFT of (a). (h-l) 2D-FFT of (b-f). The Fourier transforms 
are C6 symmetrized. Colored arrows in (h-l) show the main scattering wave vectors, 
named q1−4. 
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Figure 5.4: (a) Topography of a small field of view in 2H-NbSe2 (scale bar given 
in the bottom right part of the panel). Color scale corresponds to height changes, 
following the scale bar on the bottom left. (b-f) Tunneling conductance maps in the 
same field of view, for the bias voltages marked at the top right part. The tunneling 
conductance color scale is given by the bar on the bottom left. (g) 2D-FFT of (a). 
(h-l) 2D-FFT of (b-f). The Fourier transforms are C6 symmetrized. 

Let us first focus on the real space conductance maps (Fig. 5.3(b-f)). We best 
see the locations of the Fe impurities in (d). These produce an oscillatory pattern 
that extends over the field of view. We focus on the pattern on one side of the field 
of view, shown by the colored lines in the topography (Fig. 5.3(a)). We trace the 
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tunneling conductance as a function of the position along the colored lines in (b-f) 
and identify an oscillatory pattern. When comparing this oscillatory pattern for 
positive and negative bias voltages, we observe a π phase shift, reminiscent of YSR 
oscillations that extend from the Fe impurity sites [50, 31]. 

The Fourier transform brings more insight into the origin of these oscillations 
(Fig. 5.3(h-l)). As mentioned before, the Fourier transform is C6-symmetrized, 
in order to reduce the noise and be able to identify the spots in Fourier space. 
The Fourier transform of the topography (Fig. 5.3(d)) serves as a reference for the 
positions of the atomic and CDW Bragg peaks. We see that the oscillations at 
±1 mV have two wave vectors, both different from the CDW and atomic lattice 
and marked in Fig. 5.3(h,l) as q3 and q4. At ±0.7 mV, these two wave vectors are 
no longer visible in the images and we find two different wave vectors, which are 
symmetric with respect to the crystalline direction ΓM and which we label q1 and 
q2 at Fig. 5.3(i,k). Notice that while q1, q2 and q3 are vectors pointing to spots 
in Fourier space, q4 rather points to a circle, which is more clearly visible for the 
electron states in Fig. 5.3(l). 

We can compare these results with observations in a field of view of similar size in 
pure 2H-NbSe2, which we show in Fig. 5.4. We see that all the abovementioned wave 
vectors q1−4 are absent in this case. The scattering signal shows the anisotropies that 
have been unveiled previously, with a star shaped pattern [50] as in Fig. 5.2(a). 

Thus, we conclude that the enhanced scattering along these wave vectors q1−4 

observed in 2H-NbSe1.8S0.2 is due to the substitution of Se by S. To understand this 
point, we compare our experimental results again with calculations of the electronic 
band structure made by Jose Baldoví. The Fermi surfaces obtained for 2H-NbSe2 and 
2H-NbSe1.8S0.2 on similarly sized slabs are shown in Fig. 5.5(a) and (b). Both Fermi 
surfaces resemble in their shape: there are two nearly two-dimensional Nb-derived 
sheets, centered at the Γ point of the Brillouin zone and other two Nb-derived also 
nearly two-dimensional sheets at the Brillouin zone corners in K. Furthermore, there 
is a Se derived three-dimensional pancake at the center of the Brillouin zone. We see 
that the wave vectors at around ±0.7 mV (q1 and q2 in Fig. 5.3(h,l)) can be identified 
with highly directional scattering between symmetry-equivalent spots of the outer 
Nb-derived quasi-2D sheets centered at K (magenta arrows in Fig. 5.5(a)). On the 
other hand, at ±1 mV, we find q3 that joins the flat portions of the outer Nb-derived 
quasi-2D Γ-centered bands (yellow arrow in Fig. 5.5(a)). Finally, also at ±1 mV, we 
detect another wave vector associated to the 3D Se derived pancake pocket, which 
we identify as q4 (green arrow in Fig. 5.5(a)) . 

The caculated band structures of 2H-NbSe2 and 2H-NbSe1.8S0.2 are shown in 
Fig. 5.5(c) and (d). Note that we show in red the bands at the basal ΓMK plane, 
and in blue at the top and bottom Brillouin zone ALH planes. To perform the 
calculations in 2H-NbSe1.8S0.2, it was needed to use finite slabs using the relaxed 
atomic positions. This leads to the usual multiple sub-bands characteristic of slabs. 
It is therefore important to compare results obtained in slabs of the same size in 
2H-NbSe2 and in 2H-NbSe1.8S0.2. 
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Figure 5.5: In (a) we show the Fermi surface of an infinitely repeated relaxed 4×4×2 
unit cells slabs of 2H-NbSe1.8S0.2, projected to the hexagonal basal plane. Notice 
that bands are split due to the boundary conditions, as explained in the text. In (a) 
we plot with colored arrows the wave vectors q1−4 shown in in Fig. 5.3(h-l). We see 
that we can find nearly the same wave vector in each inequivalent layer, with only 
small changes in its direction or magnitude. In (b) we show the Fermi surface of 
2H-NbSe2 for comparison, calculated on same sized slabs. The same colors code for 
the bands as in (a) has been used. In (c) and (d), we plot the whole calculated band 
structure of 2H-NbSe1.8S0.2 and 2H-NbSe2, respectively. Notice that bands are split 
due to the finite size of the slab edges. We plot in red the bands in the ΓMK plane 
at z = 0, and in blue the bands in the ALH plane at z = ±π/2. The red and blue lines 
have a certain transparency, hence fully overlapping bands will appear purple. We 
observe that the overall overlap between blue and red bands (i.e. the 2D-character 
of the bands) is greatly enhanced in the S doped case, and thus the purple color is 
predominant in (c). 
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Qualitatively, the results in 2H-NbSe2 shown in Fig. 5.5(d) are similar as in the 
bulk [207, 208], except for the multiple sub-bands. We see, in particular, that the 
band character is never completely 2D, i.e. that the blue and red bands never 
fully overlap. Nevertheless, a simple visual comparison between Fig. 5.5(a) and (b) 
suggests that the 2D-character in the S doped sample is greatly enhanced. We find 
strongly two-dimensional bands in 2H-NbSe1.8S0.2 (Fig. 5.5(c)) along ΓK and MK 
directions. To highlight the 2D-character, we have plotted the bans for kz = 0 in 
red and for kz = ±π/2 in blue, allowing for a certain degree of transparency. We see 
that in Fig. 5.5(c) there are many sub-bands where there is a strong overlap between 
kz = 0 and kz = ±π/2. Thus, the dispersion relation becomes significantly 2D. Along 
ΓK we can identify the wave vector q3, which is then enhanced in 2H-NbSe1.8S0.2 

with respect to 2H-NbSe2 because of the reduced dimensionality. We also see that 
along MK, the bands are more 2D, but the density of states is increased close to the 
M point, due to flattening of the bands around the van Hove anomaly [209]. This 
allows us to identify the wave vectors q1 and q2. Finally, the inner Se derived pocket 
shrinks in 2H-NbSe1.8S0.2, so that the oscillatory pattern due to this pocket can be 
more easily discerned than in 2H-NbSe2. 

Thus, we see that the main effect of the Se by S substitution is to reduce the 
dimensionality of the system. Each layer is different from the adjacent layer, due to 
the random distribution of S atoms inside the structure. This enhances long range 
YSR states with an oscillatory pattern connected with portions of the Fermi surface 
having a pronounced 2D-character. 

5.2.3	 Gapless superconductivity in areas with a very large 
concentration of Fe impurities 

The distribution of Fe inside the sample is random, which means that there are 
arbitrarily large variations in the density of impurities at local scale. As we show 
now, we can find places on the sample where the average distance between impurities 
is of 25 nm, and other places on the sample where the average distance between 
impurities goes down to 18 nm (previously shown results were obtained in fields of 
view with average interimpurity distance >22 nm). In Fig. 5.6 we show the tunneling 
conductance maps in five different fields of view, each one approximately 100 nm in 
lateral size, with different average interimpurity distances, indicated on top of each 
column. Let us first remark that there are no significant fluctuations of the density 
of states for voltages well above the quasiparticle peaks (not shown in Fig. 5.6). At 
zero bias (central row of Fig. 5.6) we observe clear spots at each impurity. The spots 
have all a similar size. Notice that, while the tunneling conductance in between spots 
is zero in (a-c), it is finite in (d,e). This situation changes at a finite bias (±0.7 mV 
in Fig. 5.6). Spots are clearly much more extended in space than at zero bias in 
(a-c). In (d,e), by contrast, there is no apparent dependence of the spot size with 
the bias voltage. 

83
 



Chapter 5 Correlations and bound states in 2H-NbSe1.8S0.2 

0.7 mV

a

0 mV

0.1

0

0.7 mV

0.6

0.4

-0.7 mV

0.6

0.4

0 mV

0.1

0

0.7 mV

-0.7 mV
b

0.6

0.4

0.6

0.2

0 mV

0.7 mV

-0.7 mV

0.1

0

0.7

0.5

0.7

0.5

c

0 mV

0.2

0

0.7 mV

0.8

0.6

-0.7 mV

0.8

0.6

d

0 mV

-0.7 mV

0.8

0.6

0.3

0

0.8

0.6

e

25 nm 23.5 nm 22 nm 19 nm 18 nm

Figure 5.6: (a-e) Tunneling conductance maps made at the bias voltages marked 
in each panel (-0.7 mV top, 0 mV middle and 0.7 mV bottom). Maps are taken 
in different fields of view, with increasing number of YSR states from (a) to (e). 
The position of magnetic impurities is indicated with black dots, and the average 
distance between dots is indicated in the top part of each column. The size of all 
images is 100×100 nm2. The color scale in conductance normalized to its high bias 
voltage value is given by the color bars at the bottom right of each panel. 

Let us discuss in detail the situation depicted in Fig. 5.6. In (a) we show a field of 
view where the average distance between Fe impurities is of 25 nm. The Fe impurities 
provide, at zero bias, round spots between 10 and 20 nm lateral size. Far from the 
impurities, the tunneling conductance is essentially zero. When we look on the 
conductance at negative bias, we observe that the spots extend to larger distances 
(top panel of Fig. 5.6(a)). For positive bias (bottom panel of Fig. 5.6(a)), the same 
spots extend to even larger distances. In Fig. 5.6(b) we show a field of view with 
practically the same Fe impurity density, the average distance between impurities is 
of 23.5 nm. Here we observe qualitatively the same effect, YSR spots that increase 
their spatial extension for finite bias voltages. But the spatial extension is now 
much larger for positive bias (top panel of Fig. 5.6(b)). In other fields of view, with a 
larger density of Fe impurities (and thus shorter average interimpurity dsitances, see 
Fig. 5.6(c-e)), we observe that the bias voltage asymmetry in the spatial extension 
is essentially lost. Furthermore, the zero bias tunneling conductance in between 
impurities deviates significantly from zero. Notice, for instance in Fig. 5.6(e), middle 
panel, that the zero bias conductance is non-zero even in areas where there are 
practially no Fe impurities. 

We can further follow this behavior in the extension of the YSR states by 
calculating the radially-averaged autocorrelation function ACF as a function of the 
distance r, ACF (r) for different bias voltages (see subsection 2.4.4). In an image 
showing spots, as the middle panel in Fig. 5.6(a), ACF (r) decreases to zero and 
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the decay provides a measure of the average size of the spots in the image. When 
spots become larger as in the image at 0.7 mV in Fig. 5.6(a), the decay length 
of ACF (r) increases. In Fig. 5.7 (a-e) we show the results for the fields of view 
of Fig. 5.6. Close to zero bias, ACF (r) decays exponentially with a distance of 
about 10 nm in Fig. 5.7 (a-e). At a finite bias voltage, we observe a considerable 
increase of the decay distance of ACF (r) up to somewhat above 20 nm (white 
crosses in Fig. 5.7(a-e)). The ACF (r) shows a non-zero correlation at distances 
of nearly 100 nm. Furthermore, the decay distance is different for positive and 
negative bias voltages. The field of view considered in Fig. 5.7(a) has impurities 
whose extension for positive bias is much larger than those at negative bias. This 
reverses in Fig. 5.7(b). However, for Fig. 5.7(d) and in particular in Fig. 5.7(e), 
ACF (r) shows a strong energy-independent exponential decay at distances of order 
of 10 nm. At the same time, the averaged tunneling conductance vs bias voltage on 
each field of view Fig. 5.7(f) shows a conductance that remains close to zero at low 
bias in Fig. 5.7(a-c), but is finite in Fig. 5.7(d,e). 
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Figure 5.7: In (a)-(e) we show the average tunneling conductance over the maps 
shown in Fig. 5.6 as a white line (right y-axis). We further show as a color scale 
(from black to yellow, color bars shown in the bottom left of each panel) the ACF 
of the image in each case as a function of the distance r (left y-axis). We mark with 
white crosses line the decay length obtained from an exponential fit to ACF (r) as 
a function of the bias voltage (left y-axis). In (f) we show the average zero bias 
conductance as a function of the average interimpurity distance, as a measure of the 
surface density of Fe, in different fields of view. 

5.2.4 Discussion 

In summary, we observe that YSR impurities in 2H-NbSe1.8S0.2 present a behavior 
that is substantially different from the behavior observed previously in 2H-NbSe2. 
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First, the in-plane asymmetry of the YSR states is strongly influenced by the location 
of randomly placed S atoms around each Fe impurity. This leads to an oscillatory 
YSR pattern that does not show the sixfold pattern of pure 2H-NbSe2. Instead, 
we observe patterns that are related to particular features of the Fermi surface, 
due to the Γ and K centered Nb bands. The S induced disorder uncouples layers 
from each other, favoring an effective reduction of the dimensionality in the YSR 
oscillatory pattern. As a consequence, we observe oscillatory patterns that extend 
large distances. In large fields of view, the patterns overlap and provide strongly 
electron-hole asymmetric tunneling conductance maps, which extend the influence 
of the magnetic impurities over large areas in the sample. When the number of 
magnetic impurities becomes large, the overlap also occurs for zero bias, leading 
effectively to gapless superconductivity. 

It is quite remarkable that gapless superconductivity appears with a very small 
concentration of Fe impurities (0.0003 Fe atoms per unit cell). Our results suggest 
that reduced dimensionality enhances the effect of magnetic impurities on the density 
of states of quasi-2D superconductors. 

As transition metals are very difficult to chemically separate from each other, it is 
extremely difficult to obtain samples of Nb-based superconductors without a small 
amount of Fe, Mn or other magnetic transition metal impurities. Thus, the observed 
gapless superconductivity in the single layer limit of 2H-NbSe2 could be the result 
of the enhanced influence of isolated magnetic impurities on the superconducting 
tunneling conductance. 

5.3	 Vortex cores with magnetic impurities in 2H-NbSe1.8S0.2 

and 2H-NbSe2 

The interaction of YSR states with CdGM states has been largely overlooked, as 
they have been usually considered independent phenomena ranging their own very 
different typical sizes. To understand this interaction, we have analyzed results in 
fields of view where the average distance between impurities was larger than 22 nm, 
both in 2H-NbSe2 and in 2H-NbSe1.8S0.2 so that superconductivity is fully gapped. 

Although both are esentially perturbations in the superconducting order 
parameter, the nature of YSR and CdGM states is quite different. YSR states 
appear at a single or a few subgap energies and exhibit oscillations at the Fermi 
wavelength λF that can be resolved with atomic scale local density of states 
(LDOS) measurements [194, 210, 50, 211]. By contrast, CdGM states are spin 
degenerate and form a quasi-continuum with a level separation Δ2/EF (where Δ 
is the superconducting gap and EF is the Fermi energy), which is usually small 
compared to Δ. Thus, their discreteness and their mixed electron hole character 
only appears at very low temperatures or for Δ ≈ EF and in absence of scattering, in 
the so-called quantum limit [29]. Otherwise, thermal excitations or defects produce 
dephasing resulting in an electron-hole symmetric LDOS pattern at vortex cores. 
Thus, in most cases, CdGM states are electron-hole symmetric and their features in 
the LDOS extend to much larger distances than those of YSR states. 
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5.3.1	 Asymmetric vortex cores in presence of magnetic impurities in 
2H-NbSe1.8S0.2 and 2H-NbSe2 

We show vortices in close proximity to YSR impurities in Fig. 5.8(a),(c). When 
we make the difference between images taken at positive and negative bias voltages, 
δG(r,V )	 G(r,V )−G(r,−V )

=	 (with G0 the averaged tunneling conductance for bias voltages G0 G0
above the gap), we observe that vortex cores are not axially symmetric (Fig. 5.8(b) 
and (d)). 

c d

Figure 5.8: (a) Zero bias conductance map of a vortex in 2H-NbSe1.8S0.2. (b) Map 
showing the difference between the normalized tunneling conductance at positive and 
negative bias voltages δG(r,V ) 

= 
G(r,V )−G(r,−V ) at �V � =0.2 mV and in the same field G0 G0

of view as (a). The same quantities are plotted for 2H-NbSe2 in (c) and (d). Color 
scales are given by the bars on the right side of panels (a) and (c) for the zero bias 

δG(r,V )conductance, and on the right side of panels (b) and (d) for G0 
. Fe impurities 

are marked by black dots. Vortex centers are at the crossing point between the black 
lines. White arrows in (a), (c) give the directions of the Se lattice. 

Vortex cores in 2H-NbSe2 have a characteristic star shape while, in contrast, 
in NbSe1.8S0.2 their cores are completely round, as seen in Fig. 5.8 (c) and (a), 
respectively. In both cases the energy dependence of the vortex core CdGM states 
is completely symmetric, as they originate from symmetric gaps, and the spatial 
dependence follows the axial dependence imposed by the in-plane anisotropies of 
the material. The inclusion of YSR states in their vicinity however fundamentally 
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changes their coupling and affects the spatial distribution, causing as we will show 
a strong axial electron-hole asymmetry. 
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Figure 5.9: (a) shows a vortex imaged in a field of view without YSR impurities in 
2H-NbSe2. We show δG(r,V ) of this vortex as a function of the bias voltage (indicated G0
in each panel) in (c). In (b) we show the same image as in the previous figure (d) 
and in (d) we provide δG(r,V ) as a function of the bias voltage. White scale bars are G0
20 nm long. The atomic Se lattice directions are shown by white arrows. 
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We also measured for comparison a spectroscopic map under similar conditions 
in 2H-NbSe2 without magnetic impurities. We observe that in this absence of 

δG(r,V )YSR impurities the vortex is, for all G0 
, axially symmetric. The results 

are comparatively presented in Fig. 5.9 for the case with and without magnetic 
impurities. 

The asymmetry is thus related to the presence of YSR states close to the vortex 
cores. As the distribution of Fe impurities is random, the electron-hole asymmetry 
in vortex cores lying on different places is also different. We can see this in the three 
vortices imaged in Fig. 5.10. 

1.2

0

+0.05

-0.05

a b0.1 T0 mV 0.2 mV

100 nm

Figure 5.10: (a) shows the zero bias conductance map over a very large large 
surface, such that we can observe three vortices. The center of the vortices is marked 
with a black cross and the conductance color scale is on the right side. In (b) we 

δG(r,V )show G0 
, with its scale also on the right. We can observe that the asymmetry 

axis is different and random for each of the vortices. 

5.3.2 Theoretical model for the CdGM - YSR coupling 

To further understand these features, Sunghun Park and Alfredo Levy Yeyati have 
made a model where they calculate CdGM states, taking into account the influence 
of YSR states. The results are shown in Fig. 5.11. We see that they were able to 
make calculations taking into account the precise positions of the CdGM states we 
found in the experiment over the whole field of view. We see that the calculations 
match to a large extent the experiment. 

These calculations also bring insight into the origin of the electron-hole asymmetry. 
It is shown that the asymmetric electron-hole features of the YSR density of states 
are transferred to the CdGM states. 
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Figure 5.11: We show δG(r,V ) 
= 

G(r,V )−G(r,−V ) for the bias voltages marked in each G0 G0
panel, obtained from calculations (upper panels) and experiment (lower panels). 
Black dots provide the position of magnetic impurities. Color scale is given by the 
bars on the right. (a) to (d) correspond to the 2H-NbSe1.8Se0.2 sample and (e) to 
(h) correspond to the 2H-NbSe2 sample. 

5.3.3 Discussion 

Our combined experimental and theoretical results demonstrate that YSR states 
couple with CdGM states through exchange interaction and produce electron-hole 
axially asymmetric vortex cores. This opens the gate to the study of such coupling in 
other superconductors with different electronic properties. For instance, we propose 
β−Bi2Pd as a promising candidate system, since both the CdGM states [212, 205, 
213] and the YSR states [205] have been extensively characterized but their mutual 
influence is yet to be addressed. 

Bound states in vortex cores have been considered in the past mostly to address 
the influence of pair potential disturbances on vortex pinning [214]. Our results show 
nonetheless that the vortex positions are uninfluenced by the presence of magnetic 
impurities. 
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As we see in chapter 3, unconventional superconductors like BaFe2(As1−xPx)2 often 
show pair breaking at atomic impurities and vortices at the same time [215, 216, 
112, 217]. Our results suggest that vortex bound states might be strongly influenced 
by such impurities, although a theory for the interplay between YSR and CdGM 
states with a pairing interaction different from s-wave is required to analyze this 
further. 

5.4 Conclusion 

Our experimental results and supporting calculations show that the S substitution 
effectively reduces the dimensionality of the electronic band structure in 
2H-NbSe1.8S0.2, increasing its 2D-character and enhancing the electronic interactions 
with YSR states. We find in 2H-NbSe1.8S0.2 an increased oscillatory component 
of YSR states that enhances their spatial extension, which is absent in 2H-NbSe2. 
Furthermore, this intensified scattering smears the density of states in regions with a 
higher surface density of magnetic impurities and eventually closes the gap, realising 
an effective gapless superconductor. 

We also studied the interaction between YSR states and CdGM states at vortex 
cores. We observe that in the presence of magnetic impurities, CdGM states 
couple to neighbouring YSR states through exchange interaction and inherit their 
characteristic electron-hole asymmetry, becoming axially asymmetric. 
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6 | General conclusions 
In this Ph.D. thesis we have measured several samples with STM at very low 

temperatures in order to study their local correlations and electronic properties. 
This chapter is aimed to review what I think that are the most relevant conclusions 
of the results presented in this work. 

I have used an existing STM setup, which I have considerably modified and 
improved, achieving results with a much better spatial resolution. Furthermore, I 
have worked in improving visualization techniques by developing numerical methods 
that allow rendering relevant phenomena, such as local strain, interference effects 
and disorder from the images obtained with the STM. 

Using these techniques, I have studied the competition between magnetism and 
superconductivity in BaFe2(As0.7P0.3)2 and BaFe2(As0.56P0.44)2. I have focused my 
studies in a compound far from the magnetic transition (BaFe2(As0.56P0.44)2) and 
exactly at the point where it disappears (BaFe2(As0.7P0.3)2), which is also at the 
QCP. In both cases, I have measured for the first time the vortex lattice and vortex 
cores, as well as the electronic band structure. As for the vortex lattice, I find a 
hexagonal lattice in BaFe2(As0.56P0.44)2 and a square lattice in BaFe2(As0.7P0.3)2, 
with a strong tendency to lock to the crystalline lattice. Also the vortex core 
shape is square and aligned with the atomic lattice in BaFe2(As0.7P0.3)2, while in 
BaFe2(As0.56P0.44)2 the vortex cores are round. The magnetic field dependence of 
the vortex core size shows a completely unexpected and anomalous behavior in 
BaFe2(As0.7P0.3)2. At small magnetic fields, when vortices are isolated, we observe 
an increase of the vortex core size with the magnetic field, reaching a maximum and 
then decaying to ξHc2 at higher fields. In BaFe2(As0.56P0.44)2 the vortex core size is 
equal to ξHc2 and independent of the field. This behavior is related to the diverging 
mass close to the QCP, which causes the vortex cores to enter the quantum limit in 
BaFe2(As0.7P0.3)2 at low fields. Also I have determined the electronic band structure 
through QPI measurements in BaFe2(As0.7P0.3)2, and I found a very anisotropic 
superconducting gap that together with the V-shaped superconducting density of 
states at low bias strongly supports the presence of nodes in certain directions of 
the gap structure. 

Then I developed new techniques to better study superconducting properties, 
addressing in particular the Josephson effect, instead of the density of states. 
found a totally unexpected time-dependent behavior in the Josephson current that 
allows for an improved measurement of the Josephson effect with a STM. This 
phenomenon is the result of the coupling between the junction and the attached 
measurement circuit and could be exploited to enhance the sensitivity in Scanning 
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Josephson Spectroscopy. We provide a detailed analysis and modelling of the results 
as a delayed feedback driven RCSJ resonator. We show that the oscillatory behavior 
is a new regime for Josephson junction physics, which might be useful to improve 
Josephson circuits where the resistance is similar to the resistance of Josephson 
junctions made with the STM. 

I have also studied the problem of isolated YSR magnetic impurities (Fe atoms) 
in the compounds 2H-NbSe2 and in 2H-NbSe1.8S0.2. I have found that when the 
concentration of YSR impurities exceeds a certain threshold in NbSe1.8S0.2 the 
perturbation of isolated magnetic impurities on the superconducting properties 
overlap with each other, with a finite density of states at the Fermi level. A careful 
analysis of the interference pattern close to YSR impurities in both 2H-NbSe1.8S0.2 

and 2H-NbSe2 shows that impurity states in 2H-NbSe1.8S0.2 are connected due to 
interfering quasiparticles at the inner and outer pockets of the Fermi surface, whereas 
no such interference is observed in pure 2H-NbSe2. Calculations made elsewhere 
show that that the 2D-character of the Fermi surface is considerably enhanced by 
the S doping. Taking these insights together, I conclude that the enhanced density of 
states of 2H-NbSe1.8S0.2 induces an overlapping density of states between magnetic 
impurites and can lead to a macroscopically finite density of states at the Fermi level 
and thus to gapless superconductivity. 

Finally, I have addressed the behavior of vortex cores in presence of isolated 
and very diluted YSR impurities. I have carefully characterized the density of 
states of the vortex cores and found that it is particle-hole axially asymmetric. 
The asymmetry is present in both 2H-NbSe1.8S0.2 and 2H-NbSe2. Analyzing the 
properties of isolated YSR impurities at zero field, I have found that the S-induced 
disorder leads to a reduction in the symmetry of the YSR states from sixfold to 
threefold. This has allowed validating calculations made elsewhere and estimating 
the magnetic moment at the Fe impurities from these calculations. To explain the 
axial particle-hole asymmetry, I have compared my results to a model calculation 
made elsewhere where the influence of the YSR states in the vortex cores is 
considered carefully. Our results show that the particle-hole asymmetry of YSR 
states is transferred to the vortex core states. In all we have been able to show how 
vortex cores are affected by YSR impurities, unveiling a hitherto unexpected axial 
asymmetry in the density of states of quantum vortices. 

I also would like to mention that I have contributed to the synthesis and 
characterization of novel superconducting materials, achieving the first large set 
of superconducting compounds synthesized in the laboratory [83, 84, 85]. Thanks 
to this effort, I have been able to isolate relevant issues in the materials that I 
have studied which are due to the synthesis, considerably easing the search for the 
behavior relevant to the coexistence of superconductivity and magnetism. 

93
 



7 | Conclusiones generales 
En esta tesis doctoral hemos medido varias muestras con STM a muy bajas 

temperaturas con el fin de estudiar sus correlaciones locales y propiedades 
electrónicas. Este capítulo tiene el objetivo de repasar las que, en mi opinión, son 
las conclusiones más relevantes presentadas en este trabajo. 

Utilizando estas técnicas, he estudiado la competición entre magnetismo y 
superconductividad en BaFe2(As0.7P0.3)2 y BaFe2(As0.56P0.44)2. He centrado mis 
estudios en un compuesto alejado de la transición magnética (BaFe2(As0.56P0.44)2) y 
otro situado justo donde desaparece (BaFe2(As0.7P0.3)2) y se ha sugerido la existencia 
de un punto crítico cuántico. En ambos compuestos he medido por primera vez 
la red de vórtices y el tamaño del núcleo de los vórtices, así como la estructura 
de bandas electrónica. Sobre la red de vórtices, se observa una red hexagonal 
en BaFe2(As0.56P0.44)2 y una red cuadrada en BaFe2(As0.7P0.3)2, con una fuerte 
tendencia a alinearse con los ejes cristalinos. También la forma del núcleo de 
los vórtices es cuadrada y se alinea con los ejes atómicos en BaFe2(As0.7P0.3)2, 
mientras que en BaFe2(As0.56P0.44)2 los núcleos son redondos. La dependencia con el 
campo magnético del tamaño del núcleo de los vórtices muestra un comportamiento 
inesperado y anómalo en BaFe2(As0.7P0.3)2. A campos bajos, cuando los vórtices 
están alejados, se observa un incremento del tamaño del núcleo con el campo 
magnético, que alcanza un máximo para luego descender hasta ξHc2 a campos altos. 
En BaFe2(As0.56P0.44)2, el tamaño del núcleo es igual a ξHc2 e independiente del 
campo magnético. Este comportamiento se debe a la divergencia de la masa efectiva 
cerca del punto crítico cuántico, que provoca que los núcleos de los vórtices en 
BaFe2(As0.7P0.3)2 entren en el límite cuántico. También he determinado la estructura 
de bandas electrónica de BaFe2(As0.7P0.3)2 a través de medidas de los patrones de 
interferencia de cuasipartículas, observando un gap superconductor muy anisótropo 
que, sumado a la forma de V de la densidad de estados a bajas energías confirma la 
presencia de nodos en ciertas direcciones de la estructura del gap. 

He desarrollado nuevas técnicas para mejorar el estudio de las propiedades 
superconductoras y en particular del efecto Josephson, en lugar de la densidad de 
estados. He descubierto un comportamiento oscilatorio inesperado de la corriente 
Josephson que ha permitido mejorar la medida del efecto Josephson con STM. Este 
fenómeno es el resultado del acoplamiento entre la unión y el circuito de medida 
asociado y podría explotarse para incrementar la sensibilidad en la espectroscopía 
Josephson de barrido. He realizado un análisis de los resultados y lo he modelizado 
como un resonador RCSJ con una retroalimentación retardada. He demostrado que 
el comportamiento oscilatorio es un nuevo régimen en la física de uniones Josephson, 
que puede ser útil para mejorar los circuitos Josephson donde la resistencia sea 
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similar a aquella de las uniones Josephson en un STM. 
También he estudiado el problema de impurezas magnéticas YSR aisladas 

(átomos de Fe) en los compuestos 2H-NbSe2 y 2H-NbSe1.8S0.2. He encontrado 
que cuando la concentración de impurezas YSR excede un cierto umbral en 
2H-NbSe1.8S0.2, la perturbación de cada impureza magnética aislada en las 
propiedades superconductoras solapa con las demás, con una densidad de estados 
finita en el nivel de Fermi. Un análisis detallado del patrón de interferencia por 
dispersión cerca de impurezas YSR en ambos compuestos 2H-NbSe2 y 2H-NbSe1.8S0.2 

muestra que en este último están conectadas con las cuasipartículas dispersadas en 
las bandas internas y externas de la superficie de Fermi, mientras que en 2H-NbSe2 

puro este fenómeno de interferencia no se observa. Las simulaciones realizadas por 
otro equipo colaborador muestran que el carácter bidimensional de la superficie de 
Fermi se ve considerablemente realzado debido al dopaje de S. Teniendo todo esto 
en cuenta, concluyo que la mayor densidad de estados en 2H-NbSe1.8S0.2 induce 
un solape entre las densidades de estados de las impurezas magnéticas y puede 
conducir macroscópicamente a una densidad de estados finita en el nivel de Fermi 
y, por consiguiente, a superconductividad sin gap. 

Finalmente, he tratado el comportamiento del núcleo de los vórtices en presencia 
de impurezas magnéticas YSR muy diluidas. He caracterizado con detalle la 
densidad de estados del núcleo de los vórtices y he encontrado que existe una 
asimetría axial electrón-hueco. La asimetría está presente tanto en 2H-NbSe1.8S0.2 

como en 2H-NbSe2. Analizando las propiedades de impurezas magnéticas YSR 
aisladas a campo cero, he visto que el desorden asociado al S reduce la simetría 
de los estados de YSR desde un orden seis a orden tres. Esto ha permitido 
validar simulaciones realizadas por un equipo colaborador y estimar el momento 
magnético del Fe en las impurezas. Para explicar la asimetría axial electrón-hueco, 
he comparado mis resultados con un modelo realizado por otro equipo colaborador 
donde se considera explícitamente la influencia de cada estado de YSR en el núcleo de 
los vórtices. Los resultados muestran que la asimetría electrón-hueco de los estados 
de YSR se transfiere hacia los estados del núcleo de los vórtices. En definitiva, 
he podido mostrar cómo los vórtices se ven afectados por las impurezas de YSR, 
descubriendo una hasta ahora desconocida asimetría axial en la densidad de estados 
de los vórtices cuánticos. 

Por último, me gustaría mencionar que también he contribuido a la síntesis 
y caracterización de nuevos materiales superconductores, habiendo sintetizado 
un número relevante de compuestos superconductores en el propio laboratorio 
[83, 84, 85]. Gracias a dicho esfuerzo, he podido aislar cuestiones relevantes 
en los materiales estudiados de aquellas debidas a la propia síntesis, facilitando 
considerablemente la búsqueda de comportamientos interesantes para la coexistencia 
de superconductividad y magnetismo. 
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