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Abstract
While I was an undergraduate student, my future thesis co-director showed us a

video where dolphins create and play with vortices in water. Some years later, I
realised I have done the same, using magnetic vortices in superconductors.
Vortices were first proposed by Abrikosov in 1957. Still today, vortex physics is

a very active and fruitful research field. Individual vortices can be considered the
fingerprint of any superconductor because the way superconductivity is suppressed
inside them, directly depends on characteristic parameters such as the coherence
length and the London penetration depth. At the same time, the electrodynamic
properties of superconductors, important for applications, are governed by the
collective behaviour of the vortex lattice. The vortex lattice was first observed
by magnetic decoration in 1967 and, since then, a great number of microscopic
tools have been developed to probe its properties at local scale. In this thesis, I
have analysed vortex images with three different techniques: squid-on-tip (SOT),
magnetic force microscopy (MFM) and scanning tunnelling microscope (STM). I
have made an effort to improve our understanding of the behaviour of the vortex
lattice in different materials, with different pinning landscapes and in a large range
of temperatures and magnetic fields.
In chapter 3, I report measurements in CaK(Fe0.95Ni0.05)4As4. This material

belongs to the 1144 family of iron based superconductors. The absence of glide
symmetry in the crystalline structure, makes this family of compounds unique
among the iron-based superconductors. The stoichiometric compound, CaKFe4As4,
has been previously characterized by different techniques such as STM, ARPES or
penetration depths measurements. It shows isotropic two band superconductivity,
a disordered vortex lattice and a Fermi surface consistent with the paramagnetic
state of iron-based superconductors. Electron doping of the parent compound,
introduced for instance by substituting Fe by Ni, induces antiferromagnetic order
which is non-collinear. Because the spin orientation in the Fe layer, this non-collinear
antiferromagnetic order has been named Hedgehog spin vortex crystal. In this
chapter, I describe the first microscopic characterization of the superconducting
properties of CaK(Fe0.95Ni0.05)4As4 where superconductivity eventually coexist with
the Hedgehog antiferromagnetic order. In particular, we study how this coexistence
modifies the normal and superconducting state electronic properties.
In chapter 4, I have analysed the properties of a new vortex phase that appears

at very low magnetic fields in the superconductor β-Bi2Pd. SOT measurements at
magnetic fields of a few Gauss have shown very inhomogeneous vortex distribution,
with vortices closed packed along lines separated by vortex-free regions. I have
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Abstract

characterized in detailed the structural and fractal properties of this arrangement
and followed its dependence with the magnetic field.
In chapter 5, I have discussed the concept of disordered hyperuniformity in the

vortex lattice. The term hyperuniformity was coined by Torquato to describe an
arrangement of particles with suppressed density fluctuations that results in the
same physical properties in all directions at shorter distances. To draw a conclusion
about the hyperuniformity in vortex lattice, I have analysed images of the disordered
vortex lattice taken in a number of materials with different pinning properties.
In chapter 6, I have studied vortex creep in the anisotropic superconductor

2H-NbSe2 under tilted magnetic fields. Contrary to what has been reported so
far, we observed that vortex creep can be initiated by decreasing the temperature.
I have quantified vortex motion during creep. This allowed to compare with theory
and obtain an understanding of the cooling induced motion through the anisotropic
properties of 2H-NbSe2.
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Resumen
Cuando estaba todavía en la carrera, el que iba a ser uno de mis directores de

tesis, nos enseñó un vídeo de unos delfines jugando con vórtices que ellos mismos
formaban en el agua. Años más tarde me di cuenta de que eso es lo que he hecho,
pero con vórtices en superconductores.
Los vórtices superconductores fueron predichos por Abrikosov en 1957. En la

actualidad, la física de vórtices sigue siendo un campo muy activo y fructífero.
El núcleo de un vórtice aislado puede considerarse la huella dactilar de un
superconductor, debido a que, en su interior, la manera en que se suprime la
superconductividad depende directamente de sus parámetros característicos, como
son la longitud de coherencia y la penetración de London. Al mismo tiempo,
las propiedades electrodinámicas de los superconductores, importantes para las
aplicaciones, vienen determinadas por el comportamiento colectivo de la red de
vórtices.
La primera imagen de la red de vórtices se obtuvo en 1967 usando decoración

magnética y, desde entonces, se han inventado multitud de técnicas microscópicas
que permiten estudiar sus propiedades a escala local. En esta tesis, he analizado
imágenes de vórtices obtenidas usando tres técnicas diferentes: squid-on-tip
(SOT), microscopía de fuerza magnética (MFM) y microscopía de efecto túnel
(STM). Durante este periodo, he tratado de mejorar nuestra comprensión del
comportamiento de la red de vórtices en diferentes materiales, con diferente
distribución de centros de anclaje y en un amplio rango de temperaturas y campos
magnéticos.
En el capítulo 3, mostramos las medidas en CaK(Fe0.95Ni0.05)4As4. Este

material, pertenece a la familia 1144 de superconductores basados en hierro.
La ausencia de simetría de espejo en la estructura cristalina, hace que esta
familia de compuestos sea única entre los superconductores basados en hierro.
El compuesto estequiométrico, CaKFe4As4, se caracterizó previamente mediante
diferentes técnicas, como STM, ARPES o medidas de longitud de penetración. Este
material presenta superconductividad isótropa de dos bandas, una red de vórtices
desordenada y una superficie de Fermi consistente con el estado paramagnético de
los superconductores basados en hierro. El dopaje con electrones en el compuesto
estequiométrico, como por ejemplo, sustituyendo el Fe por Ni, induce un orden
antiferromagnético no colineal. Debido a la distribución de espines en la capa del Fe,
este orden antiferromagnético no colineal es conocido como orden antiferromagnético
tipo erizo. En este capítulo, presento la primera caracterización microscópica
de las propiedades superconductoras de CaK(Fe0.95Ni0.05)4As4, composición en la
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Resumen

cual la superconductividad coexiste con el orden antiferromagnético de tipo erizo.
Concretamente, estudiamos cómo se modifican las propiedades electrónicas del
estado normal y superconductor debido a esta coexistencia.
En el capítulo 4, he analizado las propiedades de una fase de vórtices nueva que

aparece a campos magnéticos muy bajos en el superconductor β-Bi2Pd. En presencia
de campos magnéticos de unos pocos Gauss, las medidas con SOT muestran una
distribución de vórtices muy inhomogénea, con vórtices anclados a lo largo de
líneas que quedan separadas por regiones vacías. He caracterizado en detalle
las propiedades estructurales y multifractales de esta distribución y estudiado su
dependencia con el campo magnético.
En el capítulo 5, he discutido el concepto del desorden hiperuniforme en la red

de vórtices. El término hiperuniforme fue acuñado por Torquato para describir una
distribución de partículas sin fluctuaciones de densidad, dando lugar a propiedades
físicas similares en todas las direcciones para distancias pequeñas. Para extraer una
conclusión sobre la hiperuniformidad en la red de vórtices, he analizado imágenes
de redes de vórtices desordenadas tomadas en varios materiales con diferentes
propiedades de anclaje.
En el capítulo 6, he estudiado el movimiento de arrastre de los vórtices en

el superconductor anisótropo 2H-NbSe2 bajo un campo magnético inclinado. A
diferencia de lo que se había visto hasta ahora, se ha observado que el movimiento de
arrastre de los vórtices se puede activar al disminuir la temperatura. He cuantificado
el movimiento de los vórtices y reproducido los datos experimentales con un modelo
teórico.
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1 | Introduction

1.1 Superconductivity

The discovery of superconductivity is linked to the physics of low temperatures.
In 1908, Kamerling Onnes achieved the liquefaction of Helium at 4.2 K. Three
years later, in 1911, Onnes measured the temperature dependence of the electrical
resistance in Hg [1]. As we show in Fig. 1.1, Onnes observed a drop of several orders
of magnitude around 4.15 K. The term "superconductivity" was coined and many
other materials with the same behaviour were discovered in the following years.

Hext

SuperconductorIdeal conductor

T>Tc

T<Tc

a b

Figure 1.1: (a) Historic plot of the resistance as a function of temperature in
mercury [1]. Resistance goes abruptly to zero around 4.15 K .(b) Comparison of the
behaviour between an ideal conductor and a superconductor. The superconductor
acts as a perfect diamagnet in the Meissner state.

The transition temperature was called the critical temperature, Tc. It was soon
discovered that not only superconductivity is destroyed by temperature. Depending
on the material, magnetic field and electrical current at specific values (Hc, Jc) also
destroy the superconductivity state. The dependence of the critical magnetic field

1



Chapter 1 Introduction

with temperature was characterized by an empirical formula:

Hc(T ) =Hc(0)(1 − (
T

Tc
)

2
) (1.1)

The thermodynamic critical magnetic field is proportional to the free energy
difference between the normal and the superconducting state, fn and fs respectively,
as:

fn − fs =
1
2µ0H

2
c (1.2)

Superconductivity was thought as a perfect electrical conductivity until in 1933,
when, W. Meissner and R. Ochsenfeld [2] discovered that in the superconducting
state, magnetic field does not penetrate in the interior of the material similarly to
what happens in a perfect diamagnet (Fig. 1.1b). In a perfect conductor, the state
inside the sample will remain the same as in the normal state, so that if the perfect
conductor is cooled down below its Tc at zero field, and then the field is applied, the
magnetic field in its interior will be zero. However, if the perfect conductor is cooled
down below the transition temperature in presence of a magnetic field, the field will
be "frozen" in its interior. This is fundamentally different from the Meissner state
in a superconductor, in which the magnetic field is expelled when the material goes
through the superconducting transition.

1.1.1 London theory

A phenomenological theory was proposed by the London siblings. It describes
electrodynamics of superconductors using only two equations [3]. According to this
theory, perfect diamagnetism is due to supercurrents flowing around the sample
boundaries, screening the external magnetic field. The external magnetic field and
screening currents penetrate into the superconductor at a characteristic distance,
which is called the London penetration depth, λ.

1.1.2 Ginzburg-Landau theory

Ginzburg and Landau provided a theory for superconductors based on an expansion
of the free energy in terms of a small parameter that is zero in the normal phase
and finite in the superconducting phase [4, 5].
The parameter is called "order parameter" and was subsequently connected to

the square of the Cooper pair wavefunction ∣Ψ∣2, which is also proportional to the
density of Cooper pairs.
In 1950, Landau and Ginzburg (GL) described the thermodynamic properties of

superconducting transition [5]. Using Landau’s theory of phase transitions [4]. This
theory described a second order phase transition as a sudden change of a symmetry
at the transition temperature. The system goes to a more ordered state at lower
temperatures. Landau showed that we can expand the free energy in terms of an

2



Chapter 1 Introduction

order parameter which is zero at high temperatures and increases continuously when
entering the ordered phase upon cooling.
GL theory uses as the order parameter a wave function Ψ(r) that describes

macroscopic properties of the superconducting state. The square modulus of the
wave function, |Ψ|2, is the density of superconducting electrons, ns. The free energy
density of a superconductor, fs, is:

fs = fn + α∣Ψ∣2 +
β

2 ∣Ψ∣4 +
1

2m∗
∣(ih̵▽+e∗A)Ψ∣2 +

h

8π (1.3)

Being fn the free energy of normal state, α and β, parameters characteristic of the
material, h the magnetic field per unit volume, A the vector potential and m∗ and e∗
are the mass and charge of superconducting electrons. Ginzburg and Landau then
found the equations that carry their name. These are very useful to describe spatial
variations of the Cooper pair wavefunction and can be written as:

αΨ + β∣Ψ∣2Ψ +
1

2m∗
(ih̵▽+e∗A)2Ψ = 0 (1.4)

J = −
ih̵e∗

2m∗
(Ψ∗▽Ψ −Ψ▽Ψ∗) −

e∗2

m∗c
Ψ∗ΨA (1.5)

These two equations describe the spatial distribution of the magnetic field and the
superconducting order parameter. By solving these equations, different responses of
the superconductor under magnetic field can be considered. The magnetic field can
penetrate the superconductor producing an inhomogeneous distribution of normal
and superconducting regions. In this context, the magnetic field penetrates into the
normal regions and is expelled from the superconducting regions.

Normal Type I SC
ξ>λ

Ψ(r)

ξ

λ

Hext

Ψ(r)

ξ

λ

Hext

Normal Type II SC
ξ<λ

a b

Figure 1.2: Schematic diagram of the behaviour of Ψ, ξ and λ in an interface
between the normal and superconducting state along the direction perpendicular
to the interface. In type I superconductors (a), the decay of the wavefunction is
slower than the penetration of the magnetic field inside the superconductor, and the
contrary happens in type II superconductors (b).

The responses to magnetic field can be described using two characteristics length
scales: the coherence length, ξ, showing the spatial decay of the order parameter, and
the penetration depth, λ, characterizing the decay distance of penetrating magnetic

3



Chapter 1 Introduction

field. Both lengths have the same dependence with temperature near Tc,

λ, ξ ∝
1

√
(Tc − T )

(1.6)

The ratio of both parameters is the so called Ginzburg-Landau parameter, κ.
Using this parameter we can distinguish two regimes. When κ<1/

√
2 (ξ>λ), the

penetration of a magnetic field is not energetically favorable. On the contrary,
when κ>1/

√
2 (ξ<λ) the magnetic field can penetrate into small regions of the

superconductor through flux tubes known as vortices.
Therefore, we can classify superconductors taking into account their response

under magnetic field as type I, where magnetic field is fully ejected (Meissner effect)
and type II, where magnetic field penetrates as vortices. Each vortex carries a
quantum flux given by

Φ0 =
h

2e = 2.07 × 10−15Wb (1.7)

In Fig. 1.2 we show an sketch of the difference between the behaviour of ξ and λ in
type I (a) and type II (b) superconductors.

Type I Superconductor Type II Superconductor

Normal Phase

Mixed Phase

Meissner Phase

Meissner Phase

Temperature0 Tc 0 TcTemperature

M
ag

n
et

ic
fi

el
d

Hc(T)

Hc1(T)

Hc2(T)
Normal Phase

a b

Figure 1.3: Magnetic field vs temperature phase diagrams of a type I (a) and type
II (b) superconductors. In a type I superconductor, Meissner phase is found until Hc

where the superconductor transits to the normal phase. In Type II superconductors,
however, an intermediate region between Hc1 and Hc2 is found, where the magnetic
field partially penetrates in form of vortices.

In Fig. 1.3 we compare the phase diagrams of type I (a) and type II (b)
superconductors. Type I superconductors maintain superconductivity in the
Meissner phase up to a critical value of magnetic field that depends on λ and ξ

Hc =
Φ0

4
√

2πλξ
(1.8)

When magnetic field exceeds Equation 1.8, the superconductor turns completely
normal. Type II superconductors are characterized by two critical magnetic fields,
Hc1 and Hc2. When external magnetic field is below Hc1, type II superconductors
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expel the magnetic field as type I superconductors do. At magnetic fields above
Hc1 and below Hc2 the magnetic field penetrates into the superconductor in form
of vortices in the so called mixed state. Finally, when the magnetic field is higher
than Hc2 superconductivity is destroyed. Due to the partial flux penetration of
type II superconductors, the energy cost to drive out the magnetic field from
superconducting regions is much less than in type I superconductors, increasing
the magnetic field Hc2 with respect to the critical magnetic field Hc.

1.1.3 Microscopic theory

In 1957, Bardeen, Cooper and Schrieffer published the so called BCS theory [6, 7].
Some experimental observations helped to the development of this theory. One of
the most important ones was the isotope effect [8]. The same material with different
isotopes has a different critical temperature. The expected dependence is given by
Tc ∝ M−α, being α ≈ 1/2 and M the mass of the isotope. This pointed to a very
fundamental role of the atomic lattice in the superconducting state.
In 1950, Fröhlich proposed that a weak attractive interaction mediated by phonons

could be the key to understand the microscopic origin of the superconducting state
[9]. In Fig. 1.4 we show an electron moving through the lattice that has an attractive
interaction with the positive ions of the lattice. This increases locally the positive
charge, exciting a phonon. A second surrounding electron, can be attracted to the
positive charge created by the first electron, absorbing the phonon associated with
the lattice vibration.

Figure 1.4: An electron moving through the lattice is attracted to the ions of
the lattice. As a consequence, lattice slightly disorders creating a positive charge
concentration or phonon. Another electron feels the accumulation of charge and
absorbs the phonon.

Cooper showed in [10], that when a weak attractive interaction between electrons
exists, a bound state with opposite momentum and spin is created close to the Fermi
energy. The electron pair is called Cooper pair. BCS theory generalizes the problem
for multiple electrons. According to BCS theory, the conduction band electrons are
unstable when an effective attractive interaction is present and the system energy is
reduced due to the formation of Cooper pairs.
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BCS description of the superconducting ground state finds that energy Ek of
excited states is given by:

Ek =
√

∆2 + ε2k (1.9)
where εk is the kinetic energy with respect to the Fermi level and ∆ is a constant
named as superconducting gap. Equation 1.9 is showing that a finite energy of ∆
is always necessary to create an excited state. Therefore, a gap of size ∆ is opened
where no states are allowed in this energy range. Note that, to break a Cooper pair,
we require an energy of 2∆. For energies εk >> ∆ the metallic behaviour is recovered.
As the number of states is the same in the normal and the superconducting states

(Nn(εk) and Ns(E)), and assuming a constant density of states in the normal phase
Nn(εk) ≈ Nn(0), Ns(E) can be written as:

Ns(E)

Nn(0)
=
dεk
dE

=

⎧⎪⎪
⎨
⎪⎪⎩

0 E < ∆
E

√

E2−∆2 E > ∆
(1.10)

BCS theory also describes a relation between the superconducting gap, ∆, and
the critical temperature

∆ = 1.76kBTc (1.11)
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Figure 1.5: (a) Temperature dependence of the superconducting gap in BCS theory.
(b) Superconducting density of states as a function of temperature. The colors of
the curve match with the color of the points in (a).

Fig. 1.5a shows ∆(T) as a function of temperature. At low temperature ∆
is almost constant and near Tc, ∆(T) ∝ (T-Tc)1/2. In Fig. 1.5b we show the
temperature dependence of the superconducting density of states. Above Tc, we
observe the flat density of states of a normal metal close to the Fermi energy.
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1.2 Superconducting vortices

As we mentioned before, in type II superconductors, the magnetic field penetrates
in form of vortices. Each vortex has a normal state core with supercurrents around
the core and a quantised flux of Φ0. In Fig. 1.6b we show that the magnetic field
profile decays from the center of the vortex to the exterior within a length scale of
the order of λ. Furthermore, Cooper pair density, |Ψ(r)|2, decays as approaching
the core center within a length scale of the order of ξ.
The energy per unit length of each vortex is given by

εL =
Φ2

0
4πµ0λ2 ln(

λ

ξ
) (1.12)

ba
H(r)

|Ψ|2(r)

Js

a0

Figure 1.6: In (a), an schematic view of vortices arranged in a triangular Abrikosov
lattice with an intervortex distance of a0. In (b), a cartoon of the magnetic field
(red), order parameter (turquoise) and supercurrents (orange) variation around a
vortex.

The interaction among pairs of vortices is usually repulsive, with a force that can
be written as

F12 =
Φ2

0
8π2λ2K0 (

r12

λ
) (1.13)

Where K0 is the zero-th order Hankel function. Therefore, the characteristic
length for the intervortex interaction is of the order of λ. Abrikosov showed that
vortices arrange in an ordered lattice, the so called Abrikosov lattice. This lattice
is typically hexagonal but some examples of square lattices have been found. The
distance between vortices is given by the expression:

Triangular lattice: a0 =
4

√
4
3 (

Φ0

B
)

1/2
(1.14)
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Square lattice: a0 = (
Φ0

B
)

1/2
(1.15)

We observe that the distance between neighbouring vortices only depends on the
external magnetic field.
There are different techniques that allow the observation of the vortex lattice

in real space with single vortex resolution. Some techniques are sensitive to the
magnetic field and other to the superconducting density of states. Bitter decoration,
[11], Squid-on-tip (SOT), [12], or magnetic force microscopy (MFM), [13], are
examples of techniques sensitive to the magnetic field distribution. Usually, large
areas can be measured, although only at low magnetic fields, when the intervortex
distance is of order or below λ. At higher fields, vortices overlap producing a
homogeneous magnetic field in the surface and too small contrast to be observed
by magnetic field sensing techniques. On the contrary, STM directly measures the
spatial variation of the density of states. As the density of states varies at the scale
of the coherence length and intervortex distance becomes of the order of ξ only at
Hc2, using STM we can observe the vortex lattice in a large region of the mixed
state. STM at low temperatures usually allows to make images with a size of a few
microns, and is thus not suited for the range of small magnetic fields. Using a STM
we can get detailed information on the internal electronic structure of individual
vortex core, as well as visualize the structural and dynamic properties of the lattice.
More details on vortex visualization with STM are given in refs. [14, 15].
The following subsections use concepts explained in greater detail in the books of

Tinkham [16] and Schmidt, [17] and the reviews of Brandt [18] and Blatter [19].

1.2.1 Vortex core

First we start by discussing a model developed by Kogan to describe the evolution
of vortex core size with the magnetic field [20]. Vortex core C is defined as the slope
of the order parameter at the vortex core center (see inset of Fig. 1.7b). Therefore,
the coherence length is related with C and the order parameter as

d∆
dr

∣rÐ→0 ∝
1
ξ
∝

1
C

(1.16)

The model proposed by Kogan is based on the De Gennes equation for the density
of states (DOS)

N(r)

Nn

= 1 − ∣∆(r)∣2

∆2
0

(1.17)

Being N(r) the zero bias density of states (DOS) and Nn the DOS in normal
phase. In order to simplify the spatial dependence, Wigner-Seitz approximation is
used considering the unit cell as circle of radius a where πa2 = φo/H and hence
2a ≈ 1.05a0.
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The model proposes a variation of the normalized conductance σ as:

σ = 1 − ρ
2(1 + η2)

ρ2 + η2)
exp[

η2(1 − ρ2)

1 + η2 ], ρ = r/a, η = C/a (1.18)

Here in Equation 1.18 all distances have been normalized to the radius a. ν is similar
to the width of a Gaussian. The bigger ν, the bigger the profile.
The model has been tested in different materials [21] as S-doped 2H-NbSe2,

β-Bi2Pd and CaKFe4As4 [22]. When sample is in the dirty limit (mean free path
l < ξ) we observe that vortex core is approximately constant with magnetic field
(Fig. 1.7a-b), but if superconductor is in the clean limit (l > ξ), the vortex core size
decreases when increasing the magnetic field as ∝1/

√
H (Fig. 1.7c-d).

The model has been also used for superconductors with multiple gaps over the
Fermi surface [23, 20].

|Δ|

r

a b

c d

Figure 1.7: In (a) we show the normalized profiles of the core in 2H-NbSe1.8S0.2
with the vortex image at H=0.3 T. (b), we plot the different sizes of the vortex
core with magnetic field as points and the dashed line shows the behaviour for a
superconductor in clean limit. In the inset we show how vortex core C is defined as
the slope of the order parameter at the vortex core center. In (c) we show the results
of the normalized profiles in β-Bi2Pd with an image of vortex lattice at H=0.1 T. In
(d), the sizes of the vortex core of (c), with magnetic field as points and the dashed
line represents behaviour for a superconductor in clean limit. Data taken from [21].

1.2.2 Vortex phases

We have discussed in previous sections that vortices interact among each other with
a repulsive interaction. In order to minimise the free energy, vortices are organised
in a triangular or square lattice with a lattice parameter only dependent on the
magnetic field. In real superconductors, defects are present. Defects in the atomic
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structure can locally deplete the superconducting properties in a region around the
defect with size of the order of ξ. As a consequence, the energy cost to create a vortex
in a defect is less than in a defect-free region. Thus, defects pin vortices creating
a pinning potential landscape in the sample. Pinning centres distribute over the
sample and can influence the whole vortex lattice creating disorder. As we show in
Equation 1.13 the interaction among vortices depends on the distance among them
and λ, being weaker at the lowest and the highest magnetic fields (where vortices
are, respectively, too far apart to feel the repulsive interaction or too close producing
a homogeneous field distribution). At intermediate fields, however, the repulsive
interaction is stronger (where vortices are close enough to feel repulsive interaction
but far enough to avoid overlapping). The pinning potential is, in principle, acting
over a region of the order of ξ and thus does not change much when modifying the
magnetic field. Therefore, the influence of pinning strongly depends on the magnetic
field, mainly due to the elastic properties of the vortex lattice, or the changes in the
vortex-vortex interaction when changing the intervortex distance by the magnetic
field.
Another important magnitude is the temperature. When thermal energy is of the

order of the vortex interaction energy or pinning potential, vortex lattice is influenced
by temperature as well. Therefore, the combination of vortex-vortex interaction,
pinning potential and thermal energy offers a playground where different phases can
exist. In Fig. 1.8 we show a simplified magnetic field vs temperature phase diagram
of the vortex lattice.

Normal Phase

Vortex liquid

Meissner Phase

Hc1

Hc2

Vortex solid

0 TcTemperature

M
ag

n
et

ic
fi

el
d

Figure 1.8: A schematic phase diagram of the vortex lattice. The vortex solid is,
in most of the phase diagram, a Bragg glass, but disordered vortex phases can also
occur in some compounds. In light gray the vortex liquid phase. Image taken from
[19].

An important parameter to quantify the relevance of temperature is
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Ginzburg-Levanyuk number, Gi:

Gi =
1
2 (

kbTc
4πµoH2

c ξ
3)

2

≈ 10−7κ
4T 2

c

Hc2
(1.19)

This number compares the thermal energy with the superconducting condensation
energy. The larger Gi, the larger the thermally induced effects. We can observe that
high Tc superconductors will have a larger Gi, typically of the order of 10−1-10−3. Gi

is also highly dependent on the Ginzburg-Landau parameter, κ. In most conventional
superconductors, Gi is very small, of the order of 10−8-10−11, and therefore thermal
effects are restricted to a region of a few milikelvin below the transition to the normal
state.
Hence, superconductors with a large value of Gi as high Tc or extreme type II

superconductors have an extended region of the phase diagram close to the transition
lines Hc1(T) and Hc2(T) where vortices are in liquid phase.
This has been seen in several macroscopic measurements, but also in neutron

scattering, Hall probe and nuclear magnetic resonance [24, 25, 26, 27]. Furthermore,
melting has been observed in STM measurements in amorphous W-based thin films
[28]. STM experiments are very useful, because vortices can be observed individually.
At low temperatures, the vortex lattice is solid. The vortex solid can be an

ordered solid at intermediate fields when vortex-vortex interactions are strong, or a
disordered solid at high fields where vortex-vortex interactions are weak (Fig. 1.8).
Depending on the pinning landscape, the magnetic field range of an ordered or
disordered lattice can change. The ordered solid can appear when the vortex-vortex
interactions are strong and pinning is weak. The ordered vortex solid is usually
ordered as a triangular (see Fig. 1.9a) or less commonly as a square lattice. The
ordered vortex solid is called a Bragg glass because it is not perfectly ordered as a
consequence of the interaction of the whole lattice with pinning centres. Pinning
disorder induces small vortex displacements producing quasi-long range positional
order but leaving long range orientational order.
When vortex-vortex interaction is much lower than pinning, the vortex lattice can

fully disorder in a vortex glass (Fig. 1.9b). When magnetic field is increased from the
Bragg glass, vortex lattice starts to disorder through the appearance of topological
defects in the lattice. These topological defects are called dislocations and
disclinations. Disclinations are vortices characterized by a number of first neighbours
larger or smaller than 6 (in the triangular lattice) as shown in Fig. 1.9(c,d).
The energy cost of a disclination is very high because it produces large vortex
displacements, breaking translational and orientational order. 5 and 7 first nearest
neighbours disclinations tend to pair, decreasing notably the energy cost of the defect
(see Fig. 1.9e). These defects are called dislocations. Dislocations do not break
orientational order of the lattice. Typically, the vortex lattice tends to disorder
forming first dislocations, and then disclinations appear when vortex lattice is a
disordered glass (Fig. 1.9b) [29].
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c d

e

ba

Figure 1.9: In (a) and (b), we show images of the vortex lattice taken at 100 mK
in the Bragg glass phase (a, at 2.5 T) and the vortex glass phase (b, at 5 T) in
an amorphous thin film based on W [29]. (c) and (d) are disclinations of 5 and
7 first nearest neighbours respectively and e shows a dislocation. We observe that
orientational order is maintained in (e) and lost in (c) and (d). (c), (d) and (e) are
taken from [30].

The size of region in the phase diagram where the glass phase appears is very
material dependent. In clean systems such as 2H-NbSe2, the vortex lattice remains
ordered until it reaches a field very close to Hc2. However, in other superconductors
with larger intrinsic pinning, such as iron based superconductors, the glass vortex
phase may be found in a large region of the phase diagram.
Magnetization of the superconductor can be very dependent on the applied

magnetic field history. We can distinguish two different procedures, zero field cooling
(ZFC) or field cooled (FC). In a ZFC, first the temperature is decreased below Tc

and then the magnetic field is applied. With this method, the magnetic field inside
the superconductor, B, is similar to the applied magnetic field, H.
However, the opposite is found in a FC experiment. In a FC procedure, the

magnetic field is applied in the normal phase, and then the temperature is decreased
below Tc under applied magnetic field. In a FC experiment at high fields, the vortex
lattice first goes through the vortex liquid phase before becoming solid at low enough
temperatures. This may introduce quenched disorder in the vortex lattice.
At lower fields, in a FC experiment, we first enter in the vortex liquid phase and

then we enter the Meissner state. This may lead to a situation where vortices get
trapped below Hc1, producing a frozen disordered lattice in the Meissner phase [31].
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b c

a 1 2 3

Figure 1.10: In (a) we show a flux distribution around a short cylinder. When
magnetic field is not strong it does not penetrate (1), then, if it is increased,
magnetic field penetrates at edges (2), and finally we found an intermediate state
where magnetic field passes through normal regions (3). Image taken from [32]. In
(b) the intermediate state we observed in a disk of Ta at H = 34 mT. In (c) the
intermediate mixed state observed in Nb at H = 110 mT. Both images are taken by
Bitter decoration from [33].

1.2.3 Intermediate and intermediate mixed state

Intermediate state

Let us consider a superconducting sphere of a type I superconductor in the presence
of an external magnetic field, Ha. As magnetic field lines are always tangential to
the surface, depending on the place, the density of flux lines will change. In the top
of the sphere, the magnetic field is zero, however, in the equator the magnetic field
is maximum. The equation of the tangential component of the magnetic field in the
sphere is

Hsurface =
3
2Hasinθ (1.20)

When the field reaches 2
3Hc, the magnetic field at the surface of the sphere will

be larger than Hc, forcing the transition of a surface region to the normal state.
This, however, will modify the flux distribution, because the flux needs no longer
to be expelled up to the surface. Further increasing the magnetic field leads to the
establishment of normal regions, in which the local magnetic field is exactly Hc, and
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superconducting regions in which the magnetic field is expelled.
When the magnetic field is below 2

3Hc all the sphere will be in Meissner state and
if the magnetic field is stronger than Hc the sample will be normal. Therefore, in the
region of 2

3Hc<Ha<Hc the magnetic field enters the sample. In the normal regions
inside the sample, the magnetic field is Hc and in the superconducting regions, the
magnetic field is zero.
The shape of the normal and superconducting regions in the intermediate state

depends on the geometry of the superconducting specimen. For a superconductor
of arbitrary shape, we can write

Hsurface =
Ha

1 − n (1.21)

Being n, a shape dependant demagnetization factor. For example, for a sphere n=2
3 ,

for cylinder in a parallel field, n=0, and for a thin plate in perpendicular field,
n=1. This means, that the intermediate state in a thin plate will exist starting from
a small magnetic field (Fig. 1.10a). In Fig. 1.10b we show an intermediate state
in tantalum type I superconductor where black regions are in the superconducting
state [33]. The distribution of normal and superconducting regions is very complex
to predict and depends on the actual value of Hc at each position of the sample.
Small variations of the sample properties can strongly influence the field distribution.
Generally, however, one observes rather large normal and superconducting regions
interspersed.

Intermediate Mixed state

A similar effect happens in the type II superconductors below Hc1. In this case
instead of macroscopic regions of superconducting and normal material, vortex
lattice domains are created. There are experiments showing that the inter-vortex
distance in the intermediate mixed state (IMS) domains is equivalent to a distance
corresponding to Hc1 [34]. Furthermore, the area occupied by the zero induction
regions decreases linearly with the magnetic field, until the applied magnetic field is
equal to Hc1 where the mixed state is found. Fig. 1.10c shows superconducting grey
regions, and vortex lattice domains as two fingers at the top right of the figure. The
sample is Nb and the image is taken from [33].

1.2.4 Vortex dynamics

One of the main characteristics of the superconducting state, is the null electrical
resistance. In the mixed state, with the appearance of vortices, this may change.
When a current J is applied along the surface, vortices will experience a Lorentz
force as:

FL = J ×B (1.22)

The pinning force, Fp, acts against the Lorentz force. When vortices depin, the
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Lorentz force is compensated by a dissipative viscous force, providing a constant
velocity for vortex motion in between pinning centres.

Critical state

We have discussed the dynamics of vortices as a consequence of an electrical current.
The Lorentz force is not only produced by an external current but, also, a current
can appear in the the superconductor when the magnetic field is changed [35].

Ha Ha

Ha= 0

Ha= Hmax

Ha= -Hmax

B(x)

B(x)

Figure 1.11: Magnetization curves when the field is increased (blue) and decreased
(red). Hmax is the maximum applied field that can be screened at the midplane.

Let us assume an infinite superconducting slab with thickness d, immersed in a
magnetic field smaller than Hc1. When magnetic field increases above Hc1, vortices
will enter the sample from the borders. Due to surface barriers (Bean-Livinston
barrier) and pinning, there will be a magnetic field gradient from the borders to the
center of the slab that induces a perpendicular current as

Jθ =
c

4π
dH

dr
(1.23)

This current will create a Lorentz force towards the center of the sample.
Therefore, vortices will move to the center to reduce the magnetic field gradient
until

F =
JθH

c
< Fp (1.24)

creating the critical state. C.P. Bean assumed that in a random isotropic pinning
potential, dBdr = constant (Fig. 1.11). In this case we can observe how the magnetic
field changes with r.
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1.3 Iron based superconductors

In conventional superconductors the pairing mechanism is due to attractive
electron interaction mediated by phonons. However, the discovery of cuprate
superconductors by Bernorz and Muller in 1986 completely changed this paradigm
[36]. Soon after the discovery, it was clear that the paring mechanism leading to
the high critical temperature (HTc) in the cuprates was different from the BCS
mechanism found in conventional superconductors.
Another breakthrough in superconductivity was the discovery of iron based

superconductors (FeBSCs). LaFePO was the first compound discovered by
Kamihara [37] in 2006 with Tc=4 K, but it was in 2008 from the discovery
of LaFeAsO1−xFx by Kamihara [38] with Tc=26 K where research in FeBSCs
was boosted. It was very surprising to observe superconductivity in materials
that contain iron. Iron is a magnetic material and the idea of magnetism and
superconductivity as competing phenomena was very accepted.

Figure 1.12: (a) Crystal structures of the different families of iron pnictides. Fe-As
planes are highlighted in red, taken from [39]. In top (b), a detailed view of the
Fe-As layer. In bottom (b) we show the unit cell of Fe-As layer with the spin of Fe
atoms represented with yellow arrows.

1.3.1 Crystal structures

There are a large and increasing number of FeBSCs with different crystals structures.
The crystal structure includes layers formed by iron atoms with chalcogens (Ch)
and pnictogens (Pn) in group 15 and 16 of the periodic table [40]. Examples of iron
pnictides are the so called 111 systems as LiFeAs, 122 systems as XFe2As2 (where
X is an alkaline earth metal), 1111 systems as RFeAsO (where R is a rare earth
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metal) and 1144 as YXFe4As4 where X is an alkaline earth metal (Ca, Ba..) and
Y an alakali metal (K,Rb...). Iron chalcogenides are found as 11 systems in FeSe
or FeTe and 122 systems. In Fig. 1.12a we show some examples of these different
crystal structures taken from [39].

1.3.2 Generic phase diagram

Fig. 1.13 shows the generic phase diagram of iron based superconductors. The parent
compounds at low temperatures are usually antiferromagnetic (AFM), showing most
often stripe-like spin density wave (SSDW) AFM order. In the SSDW state, the
spins of Fe atoms are parallel along one crystalline direction and antiparallel to
the other (Fig. 1.12b). The crystalline structure of the parent compounds at low
temperatures is orthorhombic, and they present an electronic order that also breaks
the C4 symmetry, called nematic order. When introducing doping or pressure, these
orders disappear and superconductivity emerges with maximum Tc close to the point
where these orders go to zero at zero temperature. In some materials, the magnetic,
structural and nematic transition remained coupled with same Tc across the phase
diagram, but in others they split given rise to different Tcs. Most often, there is a
coexistence region between the superconducting and AFM/nematic states although
it is not yet clear whether this occurs through phase separation or microscopic
coexistence [40].

Nematic
order

Figure 1.13: Generic temperature vs doping phase diagram for FeBSC. Parent
compound usually presents an antiferromagnetic order (orange). When introducing
electron or hole doping, superconductivity emerges as a dome where both
superconductivity and magnetism can coexist. Green region shows the presence
of nematic order.

The 1111 family was the first discovered FeBSC crystals, with very high critical
temperatures. Some materials are LaO1−xFxFeAs [38] or NdFeAsO1−y with a Tc =
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54 K. These materials are very hard to study as samples are small and surfaces
show different properties from the bulk, making it difficult to use surface sensitive
techniques such as STM or angle resolved photoemission (ARPES).
The 111 family has very interesting compounds as LiFeAs. LiFeAs is a

stoichiometric compound with a Tc=18 K [41]. This material does not show AFM
order. The superconducting gap and vortex lattice have been characterized in detail
using STM [42].
The 11 family includes only chalcogenides as FeAs does not crystalize. FeSe

presents vortex nemacity and monolayer of this material has the highest Tc among
FeBSC with a Tc=100 K [43].
The 122 family has been widely studied, in particular, the series with parent

compound BaFe2As2 [44]. The phase diagram presents a competition and
coexistence of magnetism and superconductivity. For instance, BaxK1−xFe2As2
when x=1 is antiferromagnetic and non superconducting, but with x=0, it is an
stoichiometric superconductor with Tc=4 K, a critical temperature much lower than
this found in the optimally doped composition with x=0.5 (Tc=38 K).
There are a lot of possible combinations of compounds, offering a big playground

to study the iron based superconductivity. As we will discuss in Chapter 3, 122
family is highly linked to the new 1144 family.

1.3.3 Fermi surface

FeBSCs are multiband systems. Several bands cross the Fermi level producing at
least three hole pockets at the center of the Brillouin zone (Γ point) and two electron
pockets at the edge of the Brillouin zone (M-point). The Fermi surface is quasi-two
dimensional with the c-axis warping increasing in the 122 compounds with respect
to this in the 1111 compounds.
Furthermore, the contribution of the electronic states near the Fermi surface

mainly comes by the three orbitals dxy, dyz, dxz and charges carriers hop between
Fe atoms through a Pn or Ch site [45, 38].
In the AFM state the Fermi surface reconstructs due to the doubling of the unit

cell and the corresponding reduction of the Brillouin zone in the magnetic state.
This doubling produces a band folding along the direction of the AFM vector in
reciprocal space (Fig. 1.14 a). The electron bands at M are translated (folded) to
the Γ point. This produces a crossing between hole-like and electron-like bands
(Fig. 1.14b). In the simplest case, where the shape and size of electron and hole
bands are the same, the crossing is produced exactly at the Fermi level (Fig. 1.14c).
The bands will then hybridize and a gap will appear at the Fermi level. This would
make the FS to disappear and the material would become insulating. However,
electron and hole pockets are not usually identical, and folding produces a reduced
FS formed by small pockets [46].
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Figure 1.14: In (a), 2D-Fermi surface of paramagnetic state. Continuous line is
the Brillouin zone (BZ) in the paramagnetic state and dashed line is the BZ in the
AFM state. (b), Bandstructure energy-momentum curves of the paramagnetic state
(continuous lines) and in dashed line, we show the folding of the band at M to the
Γ point. (c), final result of the folded band structure in the antiferromagnetic state
[46].

1.3.4 Order parameter

The symmetry of the order parameter and the pairing interaction is still unknown
for FeBSC (Fig. 1.15). There are different proposals, and the most common ones
are s± pairing, s++ symmetry or d-wave [40]. The s±, is favoured by interband spin
fluctuations. s++, could be mediated by an attractive interband interaction, because
of nematic fluctuations. d -wave symmetry, could be related for intraband repulsive
interactions [47].

Figure 1.15: Sketch of different proposed possibilities for the pairing symmetry.
The sign associated to the phase of the order parameter is represented by the color.
Taken from [40].

19



Chapter 1 Introduction

Now, s± symmetry is the more likely candidate. In this context, spin fluctuations
with the AFM SSDW vector joining hole and electron pockets will favor the
interpocket interaction.

1.4 Scope

During the following chapters I am going to review the work I have done during my
PhD thesis. In chapter 2, I am going to address the experimental and computational
methods we have used to obtained the results that will be presented in the following
chapters. I have used low temperature STM under applied magnetic fields. STM
allows to directly measured the spatial changes of the density of states, giving access
to the visualization of the vortex lattice or the determination of the electronic band
structure. Low temperatures provide the needed energy resolution and magnetic
field is used as a tuning parameter to get access to the different vortex phases. In
particular, I have designed and constructed an STM for high magnetic fields from
scratch. Furthermore, I will review the techniques we have developed to handle
and to treat spectroscopic data to get information on the superconducting gap,
bandstructure and vortex lattice of the studied materials.
In chapter 3, I will discuss the results I have obtained in a FeBSC compound that

belong to the recently discovered family of 1144 FeBSCs. This family was discovered
in 2016 [48] and in particular, an intense work has been done in CaKFe4As4.
CaKFe4As4 is an optimally doped stoichiometric superconductor with Tc=38 K
being this the largest Tc for an stoichiometric FeBSCs. Previous studies have
reported two band superconductivity consistent with s± paring and a Fermi surface
in agreement with its paramagnetic state. In this thesis, I have investigated the
properties of this material when Fe is substituted by Ni. Macroscopic measurements
have reported the appearance of a unique Hedgehog antiferromagnetic order. Here,
I will provide the first microscopic characterization of superconductivity in the
presence of Hedgehog AFM order.
In chapter 4, I will describe and characterize a new arrangement of the vortex

lattice at very low fields that has not been previously reported. Measurements of
the vortex lattice at low fields have been done in the material β-Bi2Pd using magnetic
scanning probes by groups at ICMM-CSIC in Madrid and Weizmann Institute of
Science in Israel. We have characterized the structural properties and found new
features never observed before in vortex physics but so in other interacting systems
in the regime of low interactions such as gels.
In chapter 5, I focus on the behaviour of the vortex lattice at high magnetic fields.

Recently a new ordering named hyperuniformity has been theoretically proposed.
Here, I will study vortex lattices from different systems such as W-based thin film,
Co-NbSe2, or stoichiometric and Ni-doped CaKFe4As4 at different magnetic fields.
We will show how we can distinguish a random disorder from a hyperuniform disorder
in reciprocal and real space. Finally, I will discuss if vortex lattice is compatible with
hyperuniformity.
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Lastly, in chapter 6, I will study vortex creep at low temperatures using data
taken from previous STM works in 2H-NbSe2 with tilted fields. Here, I will report a
different creep motion that can only appears in anisotropic superconductors under
tilted magnetic fields. I will discuss the tools I have developed in order to being
able to follow individual vortices from consecutive images, and different parameters
we can obtain with them. Finally, we will compare the experimental results with a
theoretical model made by R. Willa.

21



2 | Experimental Methods
The STM is a very powerful tool to study superconductors and other materials,

enabling precise measurements of the electronic bandstructure and visualization
of vortex lattices and other electronic patterns. There are few STM experiments
working at cryogenic temperatures and high magnetic fields. Improvements in
their design are making these devices more versatile and handy. In this thesis,
I have contributed to this effort by building an STM whose lateral size has been
reduced. Furthermore, STM produces huge amounts of data in the form of tunnelling
conductance curves as a function of the position. These data provide images of the
vortex lattice and images that can be used to obtain the electronic bandstructure.
Extracting this information is not always straightforward. I have developed software,
now used by other people in the laboratory, to handle the data and obtain vortex
lattice positions, correlation functions and the energy dependence of the electronic
bandstructure.
During this PhD thesis, I have been working in setting up a new STM for

magnetic fields as high as 17 T with a helium 4 cryostat capable of reaching 4 K.
I designed the microscope, achieving improvements over previous designs, and used
it to collect results. I have also participated in explaining a number of experiments
and developing the related software, mostly in the superconducting density of states
and vortex lattice. To make measurements in superconducting materials, I use a
STM that cools to lower temperatures for which I used a dilution refrigerator. In
this chapter, I will first describe the microscope I set up. Then, I will describe
the dilution refrigerator and the three axis coil. Furthermore, I will explain a few
elements of the methods and programs I developed to work with the results obtained
in STM.

2.1 Cooling and high magnetic fields: liquid helium, dilution
refrigerator and superconducting coils

2.1.1 Superconducting magnets

A superconducting magnet consists of a wound coil of superconducting wire inserted
in a superinsulated vacuum vessel, called cryostat. In Fig. 2.1a we can see a drawing
of the cryostat used in this PhD. The liquid helium part of the cryostat consists
of a container with a small diameter at the bottom, just with enough space for the
superconducting coil to be inserted in, and a large belly. This design eliminates dead
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volumes of liquid helium surrounding the coil. The coil should be always immersed
in liquid Helium. The measurement device in inserted from the top inside the hole
of the superconducting magnet. The measurement device hangs from the top, as
well as the superconducting magnet.
One problem we encountered is that the suspension system needed strong

reinforcement, because it produced vibrations in the measurement device. We thus
designed a system to clamp the superconducting coil to the inner side of the helium
container. The latter consists of tubes, which considerably improved the rigidity of
the whole system and reduced the vibrations. The support is shown in Fig. 2.1b.
Let us mention that our 17 T superconducting coil consists of two concentric

coils separated by an Aluminum tube (Fig. 2.1c). The outer coil is made with a
superconductor with smaller critical field and current (NbTi) and the inner one
with a superconducting material with very large critical field and current (NbSn3).
The coil is protected from overvoltage by a set of diodes that are located at ambient
temperature and connected through copper rods to the coil. In case of a quench,
there are a series of low value high power resistors designed to absorb partially the
heat due to the normal current.
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Figure 2.1: (a), Scheme of the cryostat. (b), Photograph of the superconducting
magnet with the structure built to reduce vibrations. (c), Top view of the
superconducting coil with two different superconducting cables and (d), scheme of
a section of the superconducting cable.

Our superconducting coil can provide magnetic fields up to 15 T at 4.2 K and up
to 17 T at 2 K (Fig. 2.1b). In order to be able to have a persistent field, the coil
is shunted by a superconducting wire located far from the high field region. The
shunt has a heater. When we want to charge the coil, we heat the shunt so that it
becomes normal. The applied current flows through the coil and remains trapped
in there when the heater is switched off.
On the top of the coil, we have a serpentine of copper with a needle valve. We

can pump helium through the needle valve and the serpentine. The temperature of
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the bath decreases then to 2 K and, above the serpentine, the temperature increases
to 4.2 K, or the temperature at the pressure of the liquid-gas interface. That way,
we can cool to 2 K and refill the helium bath without stopping the pump.

2.1.2 Dilution refrigerator

A dilution refrigerator has enormous advantages for an experiment as STM. It can
cool down to temperatures of around tens of milikelvins. The thermal noise in these
conditions is minimum, of the order of kBT, and allow us to have a perfect cryogenic
vacuum that maintains a clean surface and tunnelling barrier. Furthermore, a
dilution fridge is very stable and the experiment can be running for months while a
He refill is required only once or twice a week.
The principle of operation of a dilution refrigerator has been previously explained

in many references [49, 50] and it is based on the quantum properties of 3He and
4He. In Fig. 2.2 we show a scheme of the dilution refrigerator. It consists of
different stages. First, the mixture is injected through a tube with a pressure of
few hundred millibar to the 1K-pot at T=1.2 K. The 1K-pot is a small container
that is connected to the outer helium bath and where we can pump 4He to reach
temperatures of about 1 K. As the liquefaction temperature of the mixture is below
4.2 K, the temperature of liquid helium, the 1K-pot is a needed requisite to be
able to condense the mixture. The liquefied mixture, is continuously cooled with
heat exchangers. Heat exchangers play an important role in the cooling power
of the dilution refrigerator, using the enthalpy of the outgoing mixture. Finally
the mixture reaches the mixing chamber, the coldest part of the dilution fridge.
Here, phase separation occurs where a concentrated 3He phase is floating over a
dilute 3He phase. The mixing chamber is connected to the still (going through
the heat exchangers). In the still, the liquid-gas interface forms. The difference
of temperature between the mixing chamber and the still generates a difference of
equilibrium concentrations of 3He. Furthermore, a pump is connected to the still.
Due to the vapour pressure differences at the still, of 4He and 3He, most of the gas
that goes out is pure 3He. This perturbs the equilibrium 3He concentration in the
still and generates an osmotic pressure difference between the mixing chamber and
the still. This pressure gradient drives the 3He atoms from the mixing chamber to
the still. Thus, 3He atoms are forced to cross the boundary between the concentrated
and the dilute phase in the mixing chamber. The process of passing atoms of 3He
from the concentrated phase to the dilute phase is an endothermic process that
provides to the dilution fridge its cooling power. Pumped 3He atoms from the still
are injected again, in order to repeat the process.
In our case, we use a standard dilution refrigerator Oxford-Kelvinox MX100, with

base temperature of 25 mK and 100µW cooling power at 100 mK. The dilution
refrigerator is closed inside an inner vacuum chamber made of Al. The inner vacuum
chamber (IVC) is closed by a conventional indium seal and immersed in a He liquid
bath cryostat. The liquid helium volume in the cryostat is between 15 L and 80 L.
The lower limit is imposed by the 1K-pot. The capillary must be immersed always
in the He bath and when He level is around 1 K-pot capillary height a liquid Helium
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transfer is done. In our cryostat, the transfer is carried out every 4-5 days.
The temperature was controlled by a LakeShore370 [51]. Ruthenium Oxide

RX-202A sensors [52] were used in the 1K-Pot, the still and the mixing chamber
stages. Furthermore, an additional sensor is located on the STM holder. As a heater
a wire wound is used in the mixing chamber in order to control temperature.
Thermometry and STM signal cables are soldered from the electrical vacuum

feed to a connector. A crucial point in low temperature experiments is the correct
thermalisation of the wiring. The cables start at room temperature outside of the
experiment and they are thermalised at 4 stages inside the dilution fridge. Each
stage consists on two gold plated copper plates that clamp the wires.
Also for STM it is crucial to reduce mechanic noise, so pumps are in a different

room. Furthermore, the tubes connecting the pumps with the experiment go through
a sandbox, reducing the vibrations coming from the pumps.
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Figure 2.2: Photograph (a) and scheme (b) of a dilution refrigerator.
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2.1.3 3-Axis Superconducting Magnet

The dilution refrigerator set-up has a home-made three axis magnet consisting on
five coils mounted in an Al cage [53]. One solenoid is for the z-axis and the others are
for the x-y plane as split coils. A maximum of 5 T in the z direction is obtained and
1.2 T for the x-y plane. Therefore, full three dimensional capabilities are achieved
for magnetic fields below 1.2 T. The magnetic field has been measured along all the
coils finding an homogeneous field of 0.2% and 1% within a sphere of 0.5 cm along
the z-axis and in-plane axis respectively.
The three coils have each their own persistent mode switch. This allows us to

work independently in the three directions. The magnet is energised with a power
supply with three current sources. A commuted internal commercial stage of 5 V
and 100 A is followed by a voltage to current converter. The power supply was
designed and built by SEGAINVEX [54].
In order to reduce unused liquid helium volume around the magnet, the remaining

free space has been filled using Polyvinyl Chloride (PVC).
During the last year of the thesis we moved this whole system into a new location

with anti-vibrational floor. We had to relocate and adapt all the different parts
that this experiment contains such as pumps, pipes, the cryostat, the dilution fridge
refrigerator, the dilution control panel with the 3He-4He mixture storage and the
control electronics.

2.2 STM at high magnetic fields

Scanning tunnelling microscope was invented by Binnig and Rohrer at IBM in Zurich
[55]. In a STM, we use the precise positioning capabilities of piezoelectrics and the
properties of electron tunneling through vacuum between a flat electrode and an
atomically sharp tip. It allows the study of both surface and electronic properties
near the Fermi level with great resolution. Additionally, the STM is a very adaptable
tool depending on the experimental conditions. For this thesis we have developed a
STM for high magnetic fields up to 17 T.
The STM has a piezotube that allows making scans at atomic sizes. To be able to

operate the piezotube, we need a series of devices. First, a device allowing to move
macroscopic (mm) distances and bring a tip on top of a sample. A device allowing
to change macroscopically the position (mm scale) of the tip over the sample should
be also there. Furthermore, one should be able to clean and sharpen the tip in-situ
and to prepare the sample, so as to get clean surfaces without debris or oxides. Our
approach has been to include all these devices in a single set-up, which is cooled
and inserted in the magnet. This permits eliminating long manipulators and other
ancillary apparatus that are often used in other systems.
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2.2.1 Construction of an STM at high magnetic fields

In order to get a more intense magnetic field, the cross-sectional diameter of the
coil is usually reduced. Previous designs of the STM were too large to fit inside the
superconducting coil of 17 T. Having so many devices into a single setup is quite
difficult, which usually increases the size of the microscope to dimensions that are
not compatible with superconducting coils. Therefore, during this thesis we designed
and constructed an STM for working at high magnetic fields. First, we reduce the
size of the STM from 50 mm to 30 mm (Fig. 2.3a). Second, the whole STM is
constructed with non-magnetic materials. The STM uses Ti pieces constructed by
SEGAINVEX [54]. Screws, nuts and washers are made from brass; springs are made
from CuBe and the sample holder from Cu. We hereby distinguish between three
parts in a STM, (Fig. 2.3): Body (b), Head (c) and Base (d).
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Figure 2.3: (a), Image of the assembled STM. In (b) a photography of the Body.
In (c), a photo of the Head and in (d) the Base.

Base

The bottom part of the STM is the base (Fig. 2.3d). The sample holder is screwed
on a piece (slider) that can slide in a plane perpendicular to the tip along the rails
of the base. Two samples are glued to the sample holder, the sample we want to
measure for the experiment and a sample of the same material of the tip, typically
gold. This way, we can clean the tip in situ. Furthemore, in the sample holder we
solder a copper cable that serves to apply the bias voltage to the sample.
The sample holder is screwed on a piece that can slide in a plane perpendicular

to the tip.
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a c

d f

b

Figure 2.4: In (a) we show the top screw outside the cryostat. In (b-f) we show
the process to exfoliate a sample. In (b), an alumina is glued to the sample.
The sampleholder is pulled with the top screw (b-c) until the alumina touches the
guillotine and the sample cleaves. A counterweight is additionally used to remove
the alumina with the top part of the sample from the tip’s way [56].

To move the slider along its rails, we use a thread tied to the slider in one side.
At the other end, the thread is knotted to a piano string that is soldered to a fixed
screwed in the upper part of the dewar (Fig. 2.4a). By screwing the top screw at
the top of the dewar, the piano wire tenses pulling the slider backwards. In order to
move in the reverse direction a spring is attached to the front of the slider. When
the slider is in the front part, the spring is in its equilibrium position. When the top
screw is unscrewed, tension in the piano wire is liberated and the spring pulls the
slider forward. Besides, a spring is attached connecting the slider with the bottom
part of the base. This spring gives stability to the slider and maintains the slider
completely flat to the surface of the rail when is being pulled with the string. It is
not easy to move a sample holder in-situ at low temperatures. The motion should
not create heat, for which the slider should be lubricated. Furthermore, there should
be enough space to move, but the slider should be firmly attached to the rest of the
microscope. To solve these issues, the sample holder is surrounded by alumina sheets
that are polished and covered with graphite as a lubricant. The sample holder is
attached to the bottom and to one side using helicoidal springs, and it is built in
such a way as to minimise the space between the holder and the rail. Both springs
are made of a non magnetic material (CuBe).
This technique is very useful for a low temperature STM. First, we are able

to change from one sample to another for cleaning the tip. Second, we can
change macroscopically to other areas in the same sample with nanometric accuracy.
Surfaces of the samples are not always perfect, and with this technique we maximized
our chances to be able to find appropriate fields of view, where we obtain clean
tunnelling conditions. Third, we can cleave our samples in situ having pristine
surfaces uncontaminated at cryogenic vacuum at liquid helium temperature.
Depending on the sample, the cleavage process can be by exfoliation or breaking

[56]. The exfoliation method is used for layered samples. We glue a piece of alumina
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on top of the sample. The piece of alumina is large enough so that it will collide with
another piece that acts as a guillotine when we slide the sample holder along the
rail. (Fig. 2.4b). When the experiment is running, the slider is moved backwards
with the screw and the alumina crashes with the guillotine (Fig. 2.4c). As the
glue between alumina and surface is stronger than interlayer forces, the sample is
exfoliated (Fig. 2.4d). Furthermore, in order to remove the remaining part out of
the sample holder, a counterweight is glued to the alumina, to remove the exfoliated
part at the bottom of the inner vacuum chamber (Fig. 2.4f). We used this method in
the cleaving process of Ni-doped CaKFe4As4. In samples that are too hard, so that
the glue breaks instead of the sample, we can use a slightly modified method. Then,
we need however a long sample that breaks when touching the guillotine. This is
somewhat trickier, but works in samples that can be conditioned into long needle
like pieces.

Head

The head of the STM contains the piezotube and the tip (Fig. 2.3c). The head is
attached to the body with a CuBe spring. The tension must be strong enough to
maintain the head fixed, but flexible enough to be able to move the head vertically
with the piezostacks.
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Figure 2.5: (a), Picture of the piezotube and the tip. In (b) we show a section of
the piezotube. (c) shows the vertical motion of the piezotube and (d) the in plane
X-Y motion of the piezotube.
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The piezotube is a piezoelectric tube that goes from the interior of the head
until the exterior as shown in Fig. 2.3c. The piezotube has 6 separated electrodes.
In the exterior, along its length the X-Y electrodes are found (Fig. 2.5a). When a
voltage difference is applied between two opposite electrodes, the piezotube will bend
along that direction, depending on the sign of the voltage difference. This property
provides the X-Y motion (Fig. 2.5d). In the interior, an electrode is found along
all the inner piezotube. When a voltage is applied to this electrode, the piezotube
stretches or shrinks to control Z motion of the tip (Fig. 2.5c). Furthermore, another
electrode exists at the bottom of the piezotube used as ground. The dependence of
the motion is determined by:

∆x[Å] = y[Å] =
0.9d31L2Vx,y

dmt
∆z[Å] =

d31LVz
t

(2.1)

For our system we have a range of X and Y of 2 µm and of about 0.3 µm in Z.
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Figure 2.6: (a) and (b) are taken from Guillamon [30]. (a) shows a drawing of the
nanoindentation process and (b) the current as a function of distance between tip
and sample. The inset shows an exponential fit of the gold workfunction. (c) shows
an histogram of conductance values vs distance in gold in the designed STM at 0 T
and 14 T. Both of them show almost three peaks at multiples values of σ0.

The tip is placed at the bottom of the piezotube but it is prepared independently.
A gold wire is glued to an screw tip holder of φ=1 mm and is then screwed in a nut
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glued at the bottom of the piezotube. In between the nut and the screw a washer
is collocated to minimise the movements of the tip. A wire is additionally soldered
in the washer in order to obtain the tunnelling current signal coming from the tip.
The tip is sharpened at the end of the process cutting diagonally with clean scissors.
sharpen the tip. We use a sample made of the same material as the tip and a

controlled nanoindentation process (described in [57], see also Fig. 2.6 a and b).
As we discussed before, the motion of the sample holder has many advantages.

One of them is the possibility to clean and atomically sharpen the tip. We use a
sample made of the same material as the tip and a controlled nanoindentation process
(described in [57], see also Fig. 2.6(a-b) ). When the displacement is large, the tip
is completely crashed into the sample. When we start separating the tip out of the
sample, conductance is decreased. The conductance is quantized because the size of
the contact between tip and sample is reduced when separating both parts. When
only one atom is in between tip and sample we have only one transport channel with
the minimum possible conductance of σ0. Finally, when the junction is completely
broken, we are in the tunnelling regime. At this point, it is possible to measure the
work function (inset of Fig. 2.6b). At the end of the process, we obtain a clean,
atomically sharpened tip. In Fig. 2.6c we show a histogram of several thousands of
normalized conductance values by repeating the nanoindentation process thousands
of times at 0 T and 14 T. In both magnetic fields, we obtain a clear peak at the last
atomic contact, with conductance σ = σ0.

Body

The body of the STM is the part of the STM that assembles the head and the base
(Fig. 2.3b). All connections coming from the base (bias voltage) and the head (tip,
X,Y and Z) are centralised in the STM hody. We also find two piezostacks glued to
the hody that hold the head steady while allowing a macroscopic control of vertical
movement.
The piezostacks consists on 5 piezoelectric plates of size 10 mm x 5 mm x 0.5

mm. Each piezoelectric plate has a shear movement when a voltage difference is
applied in both faces of the plate. The shear direction depends on the sign of the
voltage difference and in order to have a reference, the plates includes a cut corner
(Fig. 2.7a). For our purpose we need that all plates forming a stack move along the
same direction. In order to obtain this, we glued the plates as shown in Fig. 2.7a.
Every plate is glued to the consecutive plate, with a copper cable in the center of
both in order to apply voltage. The motion is controlled with a sawtooth signal (see
Fig. 2.7b). At first piezostacks are flat, but as the applied voltage is increased they
move synchronously and slowly enough to move also the head due to the friction.
To achieve macroscopic motion, we use a stip-slick approach. We apply a sawtooth
signal to the piezostack, so that it moves slowly along one direction and very rapidly
goes back to the opposite direction. The prism holding the piezotube (Fig. 2.7b-1)
moves when motion is slow, sticking to the piezostack, but it slips when motion is
fast (Fig. 2.7b-2). The mechanics behind this effect are rather complex and depends
on the properties of the surfaces, which must be conditioned in such a way as to
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obtain slip within the timescale of the fast motion of the piezostack. The spring
that holds the moving part is an important element to achieve this. The contact
between the piezostacks and the head is with alumina painted with graphite. We
call this motion as Z’.
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Figure 2.7: In (a) we show how each plate is glued to the consecutive one. They are
ordered alternating the cut corner up and down. In between both plates a cable is
set to apply a voltage difference and move the head up or down. In (b), we show an
schematic picture of the Z’ movement of the STM. The saw tooth signal of bottom,
is sent to the piezostacks moving up or down the head following the three steps
marked in the picture.

Z’ motion is very useful to approach the tip macroscopically to the sample faster
and to be able to separate it in order to cleave the sample or move it from one to
another sample.

Insert

We have also designed an insert to work at helium temperature. The total length
is of 120 cm. It has radiation shields to avoid heating of the He bath from room
temperature top parts. In the top plate of the insert there are two connectors of the
STM and thermometry wiring. The support system for the STM is attached at the
bottom of the insert, so that the sample is placed at the center of the superconducting
coil. The support is made of copper to keep an homogeneous temperature in the
STM.
The wiring goes from room temperature at the top soldered to an electric vacuum

feed to connectors at the STM stage. The wiring is made of twisted pairs inserted
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inside a conducting shield. Wires are thermalized by winding them over different
copper rods on top the 4.2 K copper plate. We use 0.1 mm thick wires of copper and
manganin. Manganin has a lower thermal conductivity and the thermal contact with
the top part at room temperature is reduced. Furthermore, manganin cables have
a higher resistance filtering the high frequency component of the signal. Therefore,
we use manganin cables for the thermometer, and the X, Y and Z signals of the
piezotube. For the piezostacks (Z’), voltage and current signals we use copper cables.
As the capacity of the piezostack is of a few nF, the use of copper wires minimises
the resistance of the circuit and allows for fast motion and ultimately allows the
prism to slip from the piezostack. For the bottom part of the insert we use copper
twisted pairs wounded along thermalization blocks.
Furthermore, we attached a carbon glass thermometer and a heater to the

supporting system. Thermometer is measured with the 4-point contact method.
These provide us a full control of the STM temperature.

Control of STM

The STM also needs an electronic and computer control to operate correctly as
schematically shown in Fig. 2.8. We create a signal using the computer and send
it through an input-output port card (PIO) to a digital to analog converter (DAC).
We use a 16 bit DAC. This converts the signal to analogical, and goes through
a high-frequency filter and depending on the signal, is divided (bias voltage) or
amplified (X,Y,Z and Z’). From the amplifier/divider, the signal is again filtered
and goes to the connectors of the cryostat. The input signals (current) does the
opposite path. The current comes from the cryostat, then to an analogue to digital
converter (ADC), and it is read in the computer. Tunnelling current is of the order
of nA. We use an IV converter that converts a nA signal to a voltage of the order
of volts. Notice that we do not use here the usual digital signal processing (DSP)
of FPGA units that many other STM set-ups use. We prefer to have a full control
over the signals we send to our microscope and use direct write ports (PIO) of the
computer. There are many industrial computers with these ports nowadays and
these can be used Windows operating system. Instead of real time experiments, we
thus always send a signal and wait until we receive the answer. In practice, even
with the interruptions of Windows, this works extremely fast. Our bandwidth is
always limited by the cabling of the cryostat and is not larger than several tens of
kHz.
A proportional-integral (PI) feedback control maintains the tunnelling current

constant. The tunnelling current is read by the PI and compared with a reference
current. Depending on the comparison the PI sends a signal to the Z piezotube in
order to stretch or shrink to keep current constant.
The usual way to measure is the following. Starting from the tip macroscopically

separated we apply a bias voltage between tip and sample. In order to approach we
send a saw-tooth signal to the Z’ from the computer that goes to the piezostacks.
The tip approaches while the current is read in the computer and the PI controller.
As soon as a finite current is detected Z’ signal is cut and the feedback control is on.
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To move in-plane over the sample we have two different possibilities: positioning
and scanning. For positioning the tip in any coordinate of the window, we apply a
constant signal to the piezotube, in order to bend it and place it in the chosen point.
For the scanning, we send a triangular signal to the piezo in X/Y and a ramp in
Y/X. The triangular or the ramp voltage signals are centred around the tip position
with an amplitude depending on the chosen scanning window. During the scan the
feedback control is always on.

DAC/ADC

Electronics
and PID
control

IV 
Converter

X,Y,Z
Z’

Bias

Figure 2.8: Schematic representation of the STM control.

In order to obtain an I-V curve the feedback is switched off and we send a voltage
ramp and read the resulting current. Once the ramp is finished the feedback control
is switched on automatically. I-Z curves are also taken in the same manner as I-V
but ramping the Z signal instead of the bias voltage V.

2.2.2 Principle of operation

Precursor experiments of STM are planar tunnelling junctions. Bardeen applied time
dependent perturbation theory to evaluate tunnelling matrix elements to understand
tunnelling junction experiments [58]. The overlap of the wavefunctions of both
electrodes governs the amplitude of electron transfer between both electrodes. Two
years after the invention of the STM, Tersoff and Hamann applied a modified
Bardeen’s theory to STM. They make calculations for typical distances and sizes
in the experiments [59, 60]. The tunnelling current is obtained using Fermi golden
rule:

I(V ) =
4πe
h̵ ∫

∞

∞

[f(ε + eV ) − f(ε)]Ns(ε + eV )Nt(ε)∣M ∣2dε (2.2)

where f(E) is the Fermi distribution function, Ns and Nt are the density of states
of the sample and the tip, respectively, and |M| is the transmission probability
expressed as:

M =
h̵2

2m ∫Ω
[Ψt ∗▽Ψs −Ψs ∗▽Ψt]dS (2.3)
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We can simplify Equation 2.2 by using the Fermi energy as reference, thus EF=0
and if we assume, as we have performed measurement with a gold tip, that the
density of states Nt can be considered independent of the energy in a small energy
range around the Fermi level. Furthermore, Bardeen showed in [58] that |M| can be
treated as a constant. Using these approximations we have:

I(V ) =
4πe
h̵

∣M ∣2∫
∞

∞

Ns(ε)f(ε − eV )dε (2.4)

If we differentiate with V, in order to obtain the conductance σ(V ):

σ =
dI

dV
∝ ∫

∞

∞

Ns(ε)
∂f(ε − eV )

∂V
dε (2.5)

Equation 2.5 shows that conductance is proportional to the convolution of the
sample density of states and the Fermi distribution. As our experiments are typically
performed at low temperatures, we can approximate the Fermi distribution with a
delta function δ(ε − eV ) and Equation 2.5 can written as

σ =
dI

dV
∣TÐ→0 ∝ Ns(eV ) (2.6)

Therefore, the tunnelling conductance is proportional to the density of states
close to the Fermi energy in the limit of low temperatures. STM provides the
local measurement of the density of states (DOS) as a function of the energy in
the sample. Measuring the DOS as a function of the position and energy is called
scanning tunnelling spectroscopy (STS).

Tip Sample

z, Distance

Vacuum

T

S

EF,T

EF,S

S

Energy

eV

d

Figure 2.9: Image adapted from [50]. Tunnelling process between tip and sample
separated by a vacuum barrier of width d. The wave function of tip and sample
decays exponentially over the vacuum barrier.
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Another important property comes from the fact that the wavefunction of tip and
sample decay exponentially with distance inside the barrier (vacuum). A schematic
picture is shown in Fig. 2.9. We can write the wavefunction in 1-D as:

Ψs ∝= e
−κz; Ψt ∝= e

−κ(d−z); κ =

√
2mφ
h̵

≈ 0.5
√
φÅ−1; (2.7)

where m is the electron mass and φ is the mean value of the work function of tip
and sample in eV. By substituting the wavefunctions of Equation 2.7 we obtain

∣M ∣2 ∝ e2κd (2.8)

If we introduce the value of |M|2 in Equation 2.4 we obtain that

I ∝ e2κd (2.9)

thus, the tunnelling current depends exponentially on the distance between tip
and sample and this gives a huge resolution in z direction. Usually, we can assume
that when current changes one order of magnitude, the distance between tip and
sample is changed by an Å.

2.3 Measurements with STM

2.3.1 Topography

As Equation 2.9 shows, the tunnelling current is very sensitive to the distance
between tip and sample. This provides a high resolution measurement of the changes
in the electron density over the surface of the sample. Therefore, a topography image
can be done by scanning the surface recording the changes in Z in the piezotube in
order to maintain a constant current.

2.3.2 Spectroscopy

Equation 2.6 also gives an important result. The tunnelling conductance is
proportional to the density of states at low temperatures. In spectroscopic images,
we can obtain much more information than just with a topographic scan. This
generates however a lot of data, which have to be appropriately treated, as we
show below. Taking for each point the normalized conductance through a numerical
derivative gives the normalized DOS at each point of the scanning window as a
function of energy, for filled and empty states.
The duration of spectroscopy images can be very long depending on parameters

such as the number of points, the number averages for each point, and the scanning
velocity. In order to be effective, it is important to choose the duration considering
the goal of the measurements. Usually, we first test a fast spectroscopy (30 min) to
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make sure that the final result will be what we expect to observe in a given field of
view. High quality measurements of vortices take around 8h-12h, or quasiparticle
interference measurements take around 20-40h.

Vortex Lattice

The opening of the gap in the DOS of a superconductor is a very clear fingerprint that
can be measured as a function of the position [61]. For example, superconducting
vortices in type II superconductors, have clear DOS variation in the surface
(Fig. 2.10). If we map the DOS as a function of the energy we will obtain DOS
maps at constant energy. At an energy larger than the gap, we will have flat maps,
as DOS does not vary over space. However, DOS maps at energies smaller than the
gap will provide the contrast needed to observe the vortex lattice. The maximum
contrast is obtained at zero bias.

I

v
I

v

v

dI
dV

dI
dV

v

Figure 2.10: Current vs voltage and conductance vs voltage curves over a vortex
and among them. Colours of each curve correspond with the point marked in the
vortex image. Vortex image has been taken in of β-Bi2Pd at 0.5T [62].

Quasi-particle interference

STMmeasurements of the local density of states (LDOS) are related to the dispersion
relation, ε(k) through:

LDOS(E,r) ∝∑
k

∣Ψ(rk)∣
2δ(E − ε(k)) (2.10)

In an ideal metal, the momentum eigenstates Ψ(rk) are the Bloch functions and
the LDOS would be spatially homogeneous. In presence of impurities that break
crystal lattice periodicity, electrons will be scattered producing oscillating patterns
on the surface (see Fig. 2.11a).
Scattering of electrons by defects and impurities is most often elastic, so that the

energy is conserved and momentum is modified. For instance, if the scattering mixes
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two states of k1 and k2 the result is a standing wave with wave vector q=(k2-k1).
This wavevector will produce a modulation in the LDOS, observable in the tunnelling
conductance. In a metal the amplitude of the scattering obeys Fermi’s golden rule:

w(i→ f) ∝
2π
h̵

∣V (q)∣2Ni(Ei,ki)Nf(Ef ,kf) (2.11)

where q=kf -ki is the scattering vector, V(q) is the scattering potential and Ni

and Nf are the initial and final density of states. In particular for a superconductor
Bogoliubov quasi-particles have a dispersion relation:

E±(k) = ±

√

ε(k)2 +∆2
k (2.12)

where ∆ is the superconducting gap. We can apply the same Fermi golden rule as
Equation 2.11, introducing the effect of coherence factors

w(i→ f) ∝
2π
h̵

∣ukiu
∗

ki
± vkfv

∗

kf
∣2∣V (q)∣2Ni(Ei,ki)Nf(Ef ,kf) (2.13)

where plus and minus signs are for magnetic and non-magnetic scatters respectively
and |uk|2 and |vk|2 are the probabilities that a pair of states with wavevector ±k is
empty or filled [63].

c

Figure 2.11: Image taken from [49]. (a) STM image taken in Cu(1,1,1) at 150mK.
A modulation is observed from the point defects [64] . In the inset, the 2D-FFT
indicating the main scattering vector. (b), Scheme of the dispersion relation of
Cu(1,1,1) that can be reconstructed from the scattering vectors at different bias
voltages. (c), Schematic Brillouin zone indicating the scattering between parts of
Fermi surface with large JDOS (hotspots) adapted from Hoffman [65].

Therefore, with Equation 2.11 and Equation 2.13 we observe that the scattering
signal will be higher for scattering vectors connecting states with large joint DOS
(JDOS). These points of large JDOS are the so-called hotspots (Fig. 2.11c). As
DOS ∝ 1

∣∇k(E)∣
large JDOS will be found for q connecting parallel regions of band

structure or from large flat regions in the k-space that have large DOS. Furthermore,
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V(q) would account for any contribution from the scattering process such as spatial
anisotropies [66].
If a certain number of scattering centres exist in our material modulation in the

DOS in the real space (Fig. 2.11a) will result in an enhancement of the spectral
weight for the corresponding vector q. Therefore, a set of conductance maps at
different energies allows to track the scattering vectors as a function of the energy.
Looking at the geometry of the bandstructure at each energy, we can thus obtain
the dispersion relation for each band from which we observe scattering (Fig. 2.11b).

2.4 Data analysis

As the STM measurements are improving over time, longer measurements can be
taken and also new techniques can be used, as for example quasiparticle interference
measurements (qpi). These demand to design software in order to access and analyse
all possible information from the data.
First we have designed a program that opens the specific file of an spectroscopy.

These files contain the information of the current at different energies. This program
offers a quick visualization and a possibility to do a general preanalysis for both
conductance map and FFT at different energies.
First we obtain the DOS curves by differentiating the current vs voltage data. We

are able to plot the conductance map and its FFT for every chosen energy. Images
can then be treated by changing the contrast in order to better observe their main
features.
We have focused on the analysis of superconducting vortices and qpi. We have

designed specific functions to analyse separately both of them [67].

2.4.1 Vortices

Vortex identification

We have implemented a set of functions in order to be able to analyse vortex lattices
in detail. First we identify the vortex centres. We first determine the coordinates of
each vortex in the images. To locate the vortex positions, the cores are first identified
as regions where the normalized conductance is above a given threshold. Depending
on certain features of the image, such as amount of defects or shape of vortices,
we chose an appropriate threshold that allows us to identify the vortex positions as
precisely as possible. We also imposed a tunable area for vortex candidates. This
allowed to filter out possible contributions due to experimental noise. In this way,
the vortex lattice images (Fig. 2.12a) were transformed into a binary map with value
1 (white) inside vortex cores and 0 (black) outside (Fig. 2.12b). We identified each
white region in the image and calculated the center of mass (Fig. 2.12c). This gives
us the coordinates center of each vortex. This method works robustly but produces
false negatives and positives for noisier images. We implemented a method to correct
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by clicking in order to erase or add bad or missing points respectively. The output
result is a vector of the X-Y centres of vortex positions called centroids.
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Figure 2.12: (a), Vortex image of W-film at H=0.03T. In (b), a binary image is
associated to a is shown, for a certain threshold in conductance. The white regions
are identified and the center of mass is calculated in order to have the centroids in (c)
(blue points). We also plot the triangulation and the vortices with 6 neighbours and
more or less than 6 (white and green respectively). Two dislocations are observed
as white-green vortex pairs.

Triangulation

Another important feature to analyse vortex image is the Delaunay triangulation.
Delaunay triangulation is an algorithm consisting on, given a set of points (vortex
centers), three points are found that are circumscribed in the smallest possible
circumference which, in addition, does not contain any other point inside. This gives
a vector of size 3x(Number of triangles). Each row represents the three vortices that
forms the triangle. Furthermore, if some triangles are not correct, we are able to
remove them by clicking inside.

First neighbours map

With the triangulation output we can count the number of first nearest neighbours
of each vortex and plot them in the image. Using this map we can observe how
many defects the vortex lattice has. In an ordered vortex lattice each vortex has
6 first neighbours (in a triangular lattice). If the lattice is distorted due to the
pinning or temperature, topological defects appear as vortices with more or less
than 6 first nearest neighbours. These defects can be dislocations or disclinations
(see subsection 1.2.2).
Using the first neighbour map we also can compute a histogram of first neighbours

that can quantify the structural defect density. An example of dislocations is shown
in Fig. 2.12c with a vortex pair of 5 neighbours (green) and 7 neighbours (white).
Combining information obtained from the centroids and triangulation, we can

compute a histogram of the distance between the first nearest neighbours. We can
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follow the mean distance with magnetic field. We then can obtain, for instance,
the Abrikosov dependence for the intervortex distance in a hexagonal vortex lattice.
Additionally, the standard deviation of the first neighbours distance provides an
estimation of the distortion of the image. In chapter 4, we will discuss the behaviour
of the standard deviation with magnetic field.

Translational and orientational order

Translational (GK) and orientational (G6) correlation functions quantify the
positional and orientational disorder in the lattice as a function of distance [29].
We define them as:

GK(r) =
1
6

6
∑
l

1
N(r)

N(r)

∑
i,j

ΨKl(ri)Ψ∗

Kl
(rj) ΨKl(ri) = e

iKlrl (2.14)

G6(r) =
1

N(r)

N(r)

∑
i,j

Ψ6(ri)Ψ∗

6(rj) Ψ6(ri) =
1
N i
N

N i
N

∑
k

ei6θ(rik) (2.15)

where r is the distance of any lattice site in the origin, N(r) is the number of vortex
pairs separated by a distance r, Kl represents the 6 main reciprocal lattice vectors,
N i
N is the number of the nearest neighbours of vortex i and θ(rik) is the angle of

nearest neighbours bond between vortices i and j with respect to the reference axis.
Furthermore, we have implemented functions for analyse multifractality (see

subsection 4.3.5), calculation of the structure factor and number variance (see
section 5.2) and to follow individual vortices along different consecutive images (see
section 6.2).
All this methods are centralised in a program that is constructed as master of the

different functions. This facilitates the changes and the addition of new methods for
vortex analysis [67].

2.4.2 QPI analysis

Symmetrization

For qpi measurements, noise reduction is crucial (Fig. 2.13a). In order to increment
our scattering signal we symmetrize the FFT signals. The basic hypothesis is
that Bloch functions follow the symmetry of the crystal, so that we can reduce
the information to the corresponding symmetry component. For instance, in a
square lattice, a square is simply repeated 4 times making the appropriate rotation
and mirroring operations. First we rotate the FFT maps (Fig. 2.13b), in order
to have crystallographic direction in the vertical and horizontal axes and make a
zoom to observe the first Brillouin zone. Then, the symmetrization process can be
different given the symmetry of the sample. For a 4-fold symmetry sample we average
four quadrants of the FFT along the vertical and horizontal axes (crystallographic
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directions). This increments notably the scattering signal over the background noise
(see Fig. 2.13c).
After this process we follow the scattering vectors as a function of energy by

making profiles at constant energy and tracking the changes in the size of the qpi
vectors. We can perform vertical, diagonal or radial profiles. These profiles give 2D
maps of the scattering signal as a function of energy and momentum in the direction
used. These profile maps are usually Gaussian filtered.

a b c

0.3
Figure 2.13: (a), 2D FFT of a 7mV bias conductance map measured with STM in
CaK(Ni0.05Fe0.95)4As4. Yellow arrows indicate the crystallographic directions. (b),
Rotation of the image a with an angle of 8° in order to have the crystallographic
axes in vertical and horizontal directions. In (c), we symmetrized (b), with a 4 fold
symmetry in order to enhance the scattering signal. The size of the yellow bar is
0.3π/a, being a the lattice constant.

Determination of dispersion relationship

From the profile maps we are able to follow the peaks with energy. Using the energy
vs momentum map is already a method to observe the scattering vectors. However,
in order to have more accuracy we can identify qpi vectors as peaks in profiles of
FFT as a function of q at a given direction and fixed energy. Then, we can study
the energy dependence of the qpi vectors and relate them with the bandstructure.

Gap anisotropy

In superconductors, the scattering signal disappears at energies below the
superconducting gap. Then, we can determine the reciprocal space structure of
the superconducting gap by following the amplitude of qpi vectors as a function of
energy from above to below the superconducting gap energy.

2.5 Conclusions

We have built and designed from scratch a high magnetic field STM. We have
prepared the different parts of the STM, like the piezostack, the piezotube or the
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springs. We also have made the connections from the STM to the top of the cryostat
with twisted pairs cables to reduce the noise level and designed different stages to
thermalise the cables. Furthermore, we have tested the high magnetic field coil and
designed an anti-vibrations structure to improve the noise level of the microscope.
We also have designed a set of functions to treat STM data efficiently. We are

able to analyse vortex images, by detecting vortex centres, and triangulate them
to calculate the number first nearest neighbours and their distances, hyperuniform
and multifractal properties or translational and orientational correlation functions.
We also have implemented functions to analyse qpi measurements, in order to filter,
symmetrise or identify the scattering vectors to obtain the dispersion relationship.
Furthermore, we have moved and prepared a dilution fridge refrigerator STM

system into a new location with anti-vibration floor including moving and reinstalling
all the pumps, pipes, the cryostat and the dilution refrigerator into the new
laboratory.
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3 | Coexistence of
non-collinear magnetic
order with
superconductivity

3.1 The 1144 family

As we have shown in the introduction, the generic phase diagram of the FeBSC
consists of magnetic phases and a maximum critical temperature often occurring
in the vicinity to a quantum critical point where magnetism vanishes. Although
there are several stoichiometric superconductors, such as KFe2As2 [68], FeSe, [69],
LiFeP [70], LiFePO [71], or LiFeAs [41], the maximum critical temperature in the
phase diagram of each system occurs most often in non-stoichiometric compositions.
We say that optimally doped FeBSC are most often non-stoichiometric. A notable
exception is the CaKFe4As4 compound, where doping induces a decrease in Tc and
the appearance of magnetism. This occurs with a maximum Tc of 35 K and a
huge critical field, well in excess of 60 T, making CaKFe4As4 also interesting for
applications [72].
Superconductivity in the 1144 family of compounds was first discovered by Iyo et al

[48], who synthesized polycrystals and found a Tc of around 30 K. In a tour-de-force,
the group of Ames [73], managed to synthesize single crystals of the new family [73].
Soon it was shown that the CaKFe4As4 compound is optimally doped and that its
properties are similar to the properties of the optimally K-doped (Ba1−xKx)Fe2As2,
as we will discuss below. Contrasting the well studied family of 122 compounds, as
(Ba1−xKx)Fe2As2, the structure is somewhat different and it is important to dwell
on the similarities and differences.
First, the structure is tetragonal and there are two planes built by the FeAs blocks,

separated by the alkali or alkaline earth planes. The alkali and alkaline earth planes
are located respectively on top and on the bottom of the FeAs groups. Thus, the
planes formed by FeAs blocks have a different environment in their top and in their
bottom. This does not occur in the 122 family, where the planes above and below
the FeAs blocks always have the same kind of atoms. The consequence is that the
distance between FeAs layers and alkali layers is different than the distance between
FeAs layers and alkaline earth layers. This lowers the symmetry of the unit cell and
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the glide plane along the FeAs layers, present in the 122 compounds, is absent in
the 1144 compounds. In Fig. 3.1 we show the structure of 122 and 1144 families
marking the different distances in the CaKFe4As4. We see that the As atoms in the
FeAs are not equivalent in the 1144 structure. This makes a fundamental change
with respect to what occurs usually in 122 pnictide superconductors.

Ca

As

As

Fe

a b

c

a

a

Figure 3.1: In (a) we show the unit cell of the CaFe2As2 representing the 122 family
having glide symmetry in the plane defined by the iron layers. In (b) we show the
unit cell of the 1144 family. Alkaline earth atoms are shown in red (here Ca) and
alkali atoms in violet (here K). Fe atoms are shown in brown and As atoms in blue
(site 1) and in green (site 2). The distance between the As2 sites and Ca is of 1.5
Å, whereas the distance between As1 and K is of 2 Å.

In spite of being a compound discovered relatively recently, we now know a great
deal about CaKFe4As4, and there are even first tries to make wires out of it [74]. It
was soon shown by a combined study of STM and penetration depth that this system
is a s± superconductor, without any nodes in the order parameter [22, 75]. Nuclear
magnetic resonance is also compatible with s± superconductivity [76]. Furthermore,
it is a multigap system as shown by measurements of STM (Fig. 3.2a), penetration
depth and ARPES. Penetration depth and STM, measures two gaps, ∆1 ≈ 3 meV
and ∆2 ≈ 8 meV [22]. The Fermi surface is similar to this in the 122 FeBSC.
There are three hole pockets around the Γ-points and two electron pockets at the
M-point (Fig. 3.2b). The superconducting gap has largest values in middle hole
pockets and in one electron pocket. These pockets have similar size suggesting that
superconductivity is enhanced by nesting. These results were obtained from ARPES
and confirmed with quasiparticle interference [77, 22]. In quasiparticle interference,
mostly scattering between Γ centred bands is observed, with quasiparticle peaks and
gap opening clearly visible in the interference pattern.
The vortex lattice was observed in Ref. [22]. The lattice is hexagonal up to

8 T, with vortices being clearly visible over large areas. Vortices are pinned at
defects and surface structures where pair breaking is identified at the same time
using STM. This determines the orientation of the vortex lattice. An example of
a vortex lattice is shown in Fig. 3.2c. Vortex lattice structure was characterized
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by calculating the positional correlation length GK(r), finding that GK(r) decays at
about 3.5 intervortex distances. The vortex cores have the expected magnetic field
dependence for superconductors in the clean limit, with a shrinking size that can be
extrapolated to the coherence length at Hc2.





a b c

Figure 3.2: In (a) we show tunnelling conductance curves along the surface observed
in the inset [75]. Gap is completely open in both regions, and in the white area, 2
gaps are found. In (b), Fermi surface of CaKFe4As4 determined by ARPES [77].
Three hole pockets in red and one electron pocket in blue. Dots indicate gap
measurements finding ∆α = 10.5 meV, ∆β = 13 meV, ∆γ = 8 meV, ∆δ = 12 meV.
In (c), a vortex lattice at 3T in the stoichiometric compound. We observe a disorder
lattice with linear defect that pin vortices. In the inset autocorrelation function
shows a very disorder lattice but with peaks as in a triangular lattice [22].

Finally, let us note that the CaKFe4As4 system is an excellent compound for
STM, because the surfaces obtained with low temperature cleaving are flat and
allow measurements over very large areas. Sometimes, a surface reconstruction is
observed. But most often, the surface consists of flat areas without clearly defined
features. The cleaving plane is almost certainly the bonding plane between FeAs
and the alkali atom layer or the alkaline earth atom layer. Thus, the surface likely
consists of Ca or K [22].

3.2 Non-collinear hedgehog order

Electron count and other physical properties show a clear similarity between
K-doped BaFe2As2 and the stoichiometric CaKFe4As4. We show in Fig. 3.3a that
penetration depth curve of CaKFe4As4 (yellow curve) is very close to K-doped
BaFe2As2 at x=0.54 (black) [75] indicating a nodeless full gap. In this system,
stripe-type spin density wave (SSDW) antiferromagnetic order is suppressed by hole
doping as shown in the phase diagram of Fig. 3.3b [68]. Following this analogy, it
was suggested that magnetic order could be also induced in CaKFe4As4 by electron
doping.
Soon later, Canfield’s group reported the emergence of non-collinear
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antiferromagnetic order by adding electrons via substitution of Fe by Co or Ni in
CaKFe4As4 [78]. The antiferromagnetic order in this material is different from the
usual stripe-type spin density wave (SSDW) (Fig. 3.4a) that breaks the C4 rotational
symmetry and has been reported in most 122-compounds. Instead, electron-doped
CaKFe4As4 shows non-collinear antiferromagnetic order consistent with a hedgehog
spin vortex crystal (SVC) (Fig. 3.4c) which preserves the C4 rotational symmetry.
In the so-called hedgehog SVC phase, there are two inequivalent magnetic order
parameters, M1 and M2, associated to the antiferromagnetic vectors Q1=(π,0) and
Q2=(0,π), with |M1|=|M2| and |M1|⊥|M2|. In the SSDW phase, there is only one
nonzero Mi.
The realization of the hedgehog antiferromagnetic order in electron-doped

CaKFe4As4 is a direct consequence of the glide symmetry absence and the two
inequivalent As sites, and was confirmed by NMR measurements [78].

CaK(Ni0.05 Fe0.95)4As4

CaKFe4As4

a b

Figure 3.3: (a), Penetration length measurements of Ba1−xFe2(As0.7P0.3)2
(maroon), CaKFe4As4 (yellow) and (Ba1−xKx)Fe2As2 at x=0.54 (black) and x=0.35
(green) obtained from [75]. The curve of (Ba0.45K0.55)Fe2As2 is similar to the one
obtained in CaKFe4As4. (b), phase diagram of (Ba1−xKx)Fe2As2. Dashed lines
indicate where we can locate, for comparison, Ni doped and pure CaKFe4As4 studied
here. Phase diagram is obtained from [68]

Fig. 3.5b shows the phase diagram obtained for Ni and Co doped CaKFe4As4.
Electron doping by either Ni or Co suppresses the superconducting critical
temperature and induces the hedgehog SVC order. As Ni has two times more
electrons than Co, the doping level needed to achieve the same results is half of
it [78]. Experimentally, larger and cleaner crystals have been obtained for Ni-doping
because it implies less substitution.

57Fe Mossbauer spectroscopy experiments have shown evidence for the microscopic
coexistence between superconductivity and hedgehog SVC order [79]. However, it
has been also reported that, similar to what is found in 122 compounds, the ordered
magnetic moment is gradually suppressed when entering in the superconducting
phase, suggesting that superconductivity and magnetism (both collinear and
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noncollinear) are competing for the same electrons in the FeBSC [80].
1144: New in the family

W.R. Meier et al., npj Quantum Materials 3, 5 (2018)Figure 3.4: In (a) and (b) are the magnetic orders that have been previously
observed in FeBSC. In (c) and (d) are two examples of the SVC, hedgehog SVC in
(c) and loop SVC in (d). Image taken from [78].

b

Figure 3.5: In (a), we show the resistivity measurements in CaK(NixFe1−x)4As4 at
different doping level. The inset shows the jump in heat capacity (top) and in the
derivative of the resistance with temperature at the magnetic transition. (b) shows
the critical temperatures for superconductivity and hedgehog SVC order vs Ni and
Co doping.

Here, we have studied in detail Ni-doped CaKFe4As4 with 5% of Ni. At
this composition, superconductivity coexists with the hedgehog SVC order at
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low temperatures. We have measured the superconducting gap, performed qpi
measurements and imaged the vortex lattice to show how superconducting properties
are modified by the coexistence with the hedgehog SVC order.

3.3 Results

3.3.1 Topography

We have measured single crystals 1 mm long, 0.5 mm wide and 0.5 mm thick with
c-axis perpendicular to the surface. We always cleaved the crystals in situ at 4K.
As in CaKFe4As4, the cleaving plane is in between the FeAs and Ca or K planes,
and therefore the surface likely consists of Ca or K atoms.
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1.8A O27_B00

1.8A O27_B003A O26_Y057

3Å

0

Figure 3.6: In (a) we observe a very flat area of about 1 µm. We find line defects
which often appear in the surface of this material. In (b), a zoom of (a). Flat areas
of the sample are corrugated with random defects in white and black. (c) is a zoom
of (b).

√
2 ×

√
2 reconstruction appears but also circular region at the same height

of 1×2 reconstruction.

Fig. 3.6a shows a typical topographic image obtained in this sample. It shows
very large atomically flat areas, allowing us to make images with the maximum size
of our scanning window (2 µm). Quite often we observed small lines producing
an small corrugation of 10% of c-axis parameter. These were also observed in the
stoichiometric compound CaKFe4As4 and are likely produced during the cleaving
process. Image in Fig. 3.6b is a zoom taken in a region of Fig. 3.6a. At smaller
scale, we find the presence of hole-like defects but most often, we do not observe
clear atomic features. A similar result was also found in CaKFe4As4. In a few
places, however, we have observed atomic size features in the images. We show
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an example in Fig. 3.6c. Here, we have found surface reconstructions of the Ca
or K atoms with periodicity

√
2a ×

√
2a a and 1a×2a. The surface reconstructions√

2×
√

2 and 1×2 often appear in the 122 superconductors [81, 49] and they were also
found in small areas of CaKFe4As4 [49]. Surface reconstructions are a result of the
energy minimization during the cleaving process. We use the surface reconstruction
to identify the direction of the crystalline axes.
Fig 3.7 shows a scanning electron microscopy (SEM) image of the sample taken

once the experiment is finished. This allows us to verify the surface quality after
the cleaving and compare topographic features at different scales. Image in Fig 3.7
shows that the surface is indeed very flat, with a few steps produced by the breaking
of layers during the cleaving.

Figure 3.7: A SEM image of the sample. We observe flat areas in the micrometer
scale and lines similar to those found in STM images.

3.3.2 Superconducting density of states

In Fig 3.8, we present a typical tunnelling conductance curve measured in this
material at 300 mK. It is characterised by reduced quasiparticle peaks and a V-shape
with finite conductance at zero bias. Close to defects, we have observed an increased
zero bias conductance due to pair breaking as in the stoichiometric compound
CaKFe4As4.
In order to get more information on the gap structure we have calculated the

superconducting local density of states (LDOS) using a distribution of gaps as
follows:

LDOS ∝∑
∆i

γiRe(
E

√
E2 −∆2

i

) (3.1)

where γi is the weight of the different gap values ∆i. This approach has been used
before in MgB2, [82] and the parent compound of this material CaKFe4As4 [22]. By
using this calculation we are taking into account the contribution of the different
gaps that open in the Fermi surface to the tunnelling conductance.
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Inset in Fig. 3.8 shows γi values associated to each ∆i. The gap distribution is
very broad and centred at 1.5 meV. Note also that there is a considerable proportion
of superconducting gap which is practically zero. This is related to the very large
density of states at zero bias, absent in the non-doped compound [22, 75]. The origin
of this effect is unclear, and might be due to the influence of magnetism and the
large amount of disorder present in this sample.
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Figure 3.8: Tunnelling conductance measured in CaK(Ni0.05Fe0.95)4As4 at 300 mK.
Red line is the convolution between the LDOS and the Fermi function. Inset shows
the gap distribution used to calculate the superconducting LDOS.

Red line in Fig. 3.8 shows the convolution of the superconducting LDOS calculated
using Equation 3.1 with the Fermi function following Equation 2.5. We find a good
agreement between the experimental data and the fit.
Fig. 3.9a shows the temperature dependence of the tunnelling conductance

up to 8K. Experimental data are shown by circles and red lines are the fit
obtained following the procedure described above. Namely, we obtain the LDOS
using Equation 3.1 and then convolute it with the Fermi function at each
temperature. Fig. 3.9b shows the derivative of the superconducting LDOS at
different temperatures. The energy associated to the maximum at each curve
corresponds to the average value of the distribution of the superconducting gap.
In Fig. 3.9c we plot the temperature dependence of such an average gap value. Red
line in Fig. 3.9c is the temperature dependence of the superconducting gap expected
by BCS theory (subsection 1.1.3) using a ∆(0 K)=1.5 meV and Tc = 9.5 K.
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Figure 3.9: (a) Tunnelling conductance as a function of temperature for 0.3 K
(black), 0.8 K (red), 1 K (blue), 4 K (magenta), 7 K (green). Lines are the result
from the convolution between the DOS and the derivative of the Fermi function at
each temperature. (b) Derivative of the DOS. The maxima in the curves correspond
to the gap values at each temperature. (c) Superconducting gap as a function
of temperature with Tc = 9.5 K. Red line shows temperature dependence of the
superconducting gap obtained from BCS theory.

3.3.3 Electronic and superconducting gap structure from qpi
measurements.

As I described in subsubsection 2.3.2, STM provides a method to measure the
band structure of the material through quasi-particle interference (qpi). We have
performed qpi measurements at 300 mK and zero magnetic field in a flat area.
Fig. 3.10 shows the topography of the area where we made the qpi measurements.

This area is atomically flat and shows the presence of defects such as holes or small
atomic chains in the surface. The image has a size of 75.3 nm leading to a resolution
in the reciprocal space of 1/75.3 nm−1=0.013 nm−1. The limits of the first Brillouin
zone are at 1/0.38 nm−1=1.32 nm−1. In order to obtain the qpi signal, we performed
spectroscopic measurements in this area by taking tunnelling conductance curves
from -30 mV to 30 mV in each point of the image. We then build conductance maps
of 256 x 256 pixels for different bias voltages, obtaining one image each 0.3 mV.
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Figure 3.10: Topographic image taken simultaneously in the region where qpi
measurements were made at 300 mK and 0T.

Several conductance maps are shown in the top panels of Fig. 3.11(a-e). They
show interference patterns due to impurity scattering that change with energy.
The corresponding Fourier transforms (FFT) within the first Brillouin zone are
shown in the bottom panels of Fig. 3.11(a-e) (using symmetrization as explained
in subsection 2.4.2). We plot the crystalline axes as arrows. Note that the FFT is
rotated with respect to the real space images, to more clearly discuss the behaviour
as a function of the crystalline axis. We find that the amplitude of the qpi signal also
changes with the bias voltage, being larger at high bias voltage (with the strongest
signal at negative bias voltages) and almost disappearing at energies below the
superconducting gap.
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Figure 3.11: (a-e) Top panels shows conductance maps at -18 mV, -7 mV, 0 mV, 7
mV and 16 mV. Bottom panels show the symmetrized FFT in the first Brillouin zone
where Ca/K atoms are found at [0, ±2π/a] and [±2π/a, 0]. Dashed circles represent
the observed scattering vector that we called qα (red), qβ (purple) and qγ (black)
pockets.
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We have identified three qpi vectors that we call qα, qβ and qγ. To determine the
qpi vectors and follow their energy dependence we search for maxima in the FFT
profiles as a function of energy along the two main high symmetry directions, Γ-X
and Γ-M. In Fig. 3.12 we show FFT profiles vs energy along Γ-M (a) and Γ-X (b)
in the q-range from 0.2π/a to 0.4π/a. For clarity we highlight in this figure the
maxima corresponding to qγ as black circles.
In Fig. 3.13 we show a 2D-map of the bias voltage vs q with the intensity of

the scattering signal in qpi providing the color scale. In (a) we represent the Γ-M
direction and in (b) Γ-X direction. The color scale corresponds in both images
to similar changes in the intensity of scattering. In both of them we identify
three scattering vectors, qα (red), qβ (purple) and qγ (black) shown by circles
in Fig. 3.13. The size of the three qpi vectors decrease with energy being this
dependence more strongly for qα and qβ. The size of the vectors reflect the in-plane
shape of the corresponding scattering circles (Fig. 3.13). In particular, qα and qβ
are approximately isotropic, although qβ is slightly larger along the Γ-M direction.
However, in qγ we find a clear in plane anisotropy. In particular, qγ is larger along
the Γ-M direction than in Γ-X direction. At voltages of order or smaller than the
superconducting gap, we observe a clear decrease in the scattering intensity. In order
to quantify this, we represent in the inset of Fig. 3.13b the FFT amplitude at qα, qβ
and qγ as a function of energy. We find that the scattering signal decreases at bias
voltages below the gap for the three qpi vectors, indicating that the superconducting
gap opens in Fermi surface sheets associated with these vectors.

0.2 0.3 0.4
q(/a)

0.2 0.3 0.4
q(/a)

30 mV

-30 mV

0

a b

Figure 3.12: FFT profiles as a function of q in the range [0.2-0.4]π/a in Γ-M (a)
and Γ-X (b) direction. The curves are shifted vertically for clarity. We identify the
peaks of the FFT signal corresponding to qγ (black circles) and follow them with
energy.

We can clearly see that the decrease in intensity inside the superconducting
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gap region is band and direction dependent. In particular the latter points
towards a sizeable anisotropy of the superconducting gap. Fig. 3.14a shows the
energy dependence of the FFT amplitude in qγ as a function of the angle. Here
0° corresponds to the Γ-X direction and 45° to the Γ-M direction. We find
that the scattering intensity has a clear four-fold symmetry, indicating that the
superconducting gap is also four-fold. From the observed in-plane dependence of
the scattering amplitude, we can see that the superconducting gap anisotropy is
of about a factor of three, being largest along Γ-X. We observe in Fig. 3.14b the
correspondence of the θ angle with the atomic directions.
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Figure 3.13: We show the amplitude of FFT (color plot) and qpi vectors (qα in
red, qβ in purple and qγ in black) as a function of the bias voltage along the Γ-M
direction (a) and Γ-X (b). Inset in (b) shows the energy dependence of the FFT
amplitude at qα, qβ and qγ.
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Figure 3.14: (a), FFT amplitude of qγ as a function of energy. Black color indicates
that the superconducting gap is open suppressing the qpi signal. The dashed line is
a simple sinusoidal dependence and serves as a guide to the eye. (b) Representation
of the FeAs layer of CaKFe4As4 with the magnetic moments of Fe atoms (brown)
in the hedgehog phase. Hyperfine field generated by Fe magnetic moments in As1
atoms are shown as blue arrows. The hyperfine field is zero in the As2 sites. The
larger gap δΓX is found along the direction of the main crystalline axis (blue square)
while the smaller gap δΓM is observed at 45°, along the main axis of the Fe lattice
(brown square).

3.3.4 Vortex lattice in Ni-doped CaKFe4As4

We have observed the vortex lattice under magnetic field. Fig. 3.15b shows a
large scale image of the vortex lattice showing hundreds of vortices. This image
is built from the spatial changes of the zero bias conductance in the region shown
in Fig. 3.15a. This region is as large as our maximal scanning window at cryogenic
temperatures. Notice that the height changes in the image (of 2 µm × 2 µm size)
amount to merely 0.5 nm. Topographic features observed in Fig. 3.15a are also
seen in the vortex map of Fig. 3.15b because defects produce enhanced zero bias
conductance through pair breaking. Pair breaking in topographic defects produces
similar contrast in the image than the vortex lattice, making it sometimes difficult
to resolve isolated vortices. In the following, we will discuss smaller sized images,
where we can clearly identify the positions of isolated vortices.
In order to understand the behaviour with field, we took images at four different

magnetic fields, 0.5 T, 2 T, 3 T, and 4 T. These are shown in Fig. 3.16. The vortex
lattice is very disordered at all magnetic fields.
We quantified the disorder in the vortex lattice, by identifying vortex positions in

the images shown in Fig. 3.16 and calculated the Delaunay triangulation following
subsection 2.4.1. Using the vortex positions, we can calculate the average distance
between first neighbours. The result is plotted in the inset of Fig. 3.16d as a function
of the magnetic field. We find that the intervortex distance follows the behaviour
expected for an Abrikosov vortex lattice.
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Figure 3.15: In (a) we show the topographic image of the region where the vortex
lattice shown in (b) has been observed. (b) Conductance map taken at 0 mV, T
= 300 mK and H=2 T, showing a vortex lattice (vortices are the tiny red dots
distributed over all of the image) with more than 1000 vortices. Red lines and larger
size dots in (b) are due to pair breaking in topographic defects.
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Figure 3.16: Vortex lattice images at different values of the magnetic field. The
lattice is very disordered with a lot of defects. White lines are the Delaunay
triangulation of the lattice. In the inset of (d), we show first nearest neighbour
distance versus magnetic field. Dashed line is the intervortex distance as a function
of magnetic field for a triangular Abrikosov vortex lattice.

We also have calculated the number of first neighbours for each vortex. In
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Fig. 3.17a we show the vortex image at 4 T. Vortices with less than 6 neighbours
are marked by green dot, with more than 6 neighbours with black dots and with 6
neighbours with white dots. Some vortices are at the borders of the image and we
cannot determine their nearest neighbours. We thus do not consider these vortices
in our calculations. We observe dislocations and disclinations. A histogram of the
number of neighbours is shown in Fig. 3.17c. The percentage vortices without 6
neighbours is 56%.
In Fig. 3.17c we show the positional correlation function Gk(r) for the 4 T image,

calculated following subsection 2.4.1. There is a very fast decay of Gk(r) in a very
short distance of around ∽2a0. The vortex lattice has clearly no long range order.
Furthermore, the size of ordered vortex bundles is merely a couple of intervortex
distances. There is also, of course, no orientational order. All this is seen in the
Fourier transform of the vortex lattice (inset of Fig. 3.17a), which shows a thick
circle around the average intervortex distance.
We also examined the evolution of the tunnelling conductance from the vortex core

to the superconducting area in between vortices (Fig. 3.18a). In between vortices we
find a similar tunnelling spectroscopy as in zero field (Fig. 3.8). As we approach the
vortex core, the gap closes. Contrary to what was observed in the parent compound,
we did not find a zero bias peak in the center of the vortex. This is consistent with
the reduced mean free path found in this system.
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Figure 3.17: (a) Zero bias normalized conductance map at 4 T. White lines indicate
the Delaunay triangulation and vortices coloured in white have 6 nearest neighbours,
in green less than 6 and in black more than 6 nearest neighbours. In the inset, the
2D-FFT map of the image. In (b), the translational correlation function Gk(r), [29].
It decays very fast with distance. Red line is the fit to exponential decay with a
length scale of about ∽2a0. A histogram of first nearest neighbours for the image in
a is shown in (c).

When we take a look on individual vortices, we see that their shape is often not
really round. Probably this is due to the mixture between the features in the density
of states due to pair breaking in defects and the presence of vortices. Nevertheless,
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there is clearly no tendency to form square vortices, as for instance in LiFeAs [42].
As discussed in subsection 1.2.1, it is interesting to extract the vortex core size

from the spatial dependence of the tunnelling spectroscopy and plot this as a function
of the magnetic field. In the clean limit, vortex cores are observed to increase
their size with decreasing magnetic field. Furthermore, in multigap superconductors,
complex vortex core shapes could eventually appear. In the dirty limit [20], the
core size is expected to be magnetic field independent. Finally, as shown in [83],
determining the vortex core size is an independent and neat way of obtaining the
superconducting coherence length and compare the result with the one obtained
from the upper critical field.
To use the analysis of [83], we faced here however significant problems. All

vortices are a little different from each other, so that we did not manage to choose
a representative vortex at each magnetic field. To overcome this difficulty, we have
designed a new method, which we describe in the next section.
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Figure 3.18: (a), Normalized tunnelling conductance along the path showed in (b).
As we move inside the vortex core, gap completely closes without a zero bias peak.
(b), Conductance image at 0 mV, 2 T and 300 mK showing a single vortex. Dashed
white arrows indicate the path along which the conductance curves shown in a have
been taken.

Determining vortex core

We can understand images of the vortex lattice obtained by STM as containing
information about both structure of the lattice and shape and size of the vortex
core. Let us try to separate these two contributions in the images. To this end,
we introduce a structure and a form factor. The structure factor of the lattice,
Istructure(r), is defined by the vortex positions. The form factor of the vortex, Iform(r)
describes the shape in real space of a single vortex. The vortex lattice images
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obtained by STM, I(r), are the result of the convolution between the structure and
the form factors. This can be expressed as:

I(r) = Istructure(r) ∗ Iform(r) = ∫
∞

−∞

Istructure(r)Iform(r − r′)dr′. (3.2)

We can obtain Istructure(r) by identifying vortex positions and setting up a matrix
containing the position of each vortex. To obtain the form factor, we go to reciprocal
space and write:

I(q) = FFT [Istructure(r) ∗ Iform(r)] = Istructure(q)Iform(q). (3.3)

As the Fourier transform of a convolution is the product between the Fourier
transform of both components of the convolution. Now we take the Fourier transform
of the structure factor and obtain from it, using Equation 3.3, the Fourier transform
of the form factor. Once we have done this, we can go back to real space and write
the form factor:

Iform(r) = ∫
∞

−∞

I(q)

Istructure(q)
e2πirqdq. (3.4)

a b

c d

Figure 3.19: In (a) we show a vortex image of β-Bi2Pd at 0.2 T (I(r)). In (b),
we show the the FFT of (a), I(q). In (c) Istructure(r) is calculated by determining
the vortex centres creating a binary matrix of zeros where the vortex centres have a
value of 1. (d) shows the FFT of Istructure(r).
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We can now test this method using β-Bi2Pd, where the vortex core size has been
already obtained previously [21]. Fig. 3.19(a-b) we show a vortex lattice image in
β-Bi2Pd (I(r)) and its FFT (I(q)). We first determine vortex positions to obtain
the structure factor (Istructure(r), panel c) and its FFT (Istructure(q), panel d). Using
Equation 3.3 and Equation 3.4 we can calculate the form factor Iform(r). The results
are shown in Fig. 3.20.

(c) (d)

Figure 3.20: Iform(r) of Fig. 3.19a obtained by deconvoluting the Istructure(r) of
I(r). The image has the same scale and units as I(r) (see previous figure).

In Fig. 3.21a we show the vortex profiles obtained from Iform(r) for different
magnetic fields. Lines are the fits to Kogan’s model that allows to determine the
vortex core size[83] (see also subsection 1.2.1). The resulting core sizes are shown in
Fig. 3.21b (black points) and compared with the vortex core sizes obtained previously
using a different method to determine the vortex profile. We find a very good
agreement between both methods.
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Figure 3.21: In (a), we show vortex core profiles obtained from the form factor
(points) and the fitting to Kogan’s model lines. (b) shows the vortex core size vs
field obtained using the two different methods to get the vortex profiles.

We also want to test the method with a more exotic example. We applied the
convolution to the star-shape vortices in 2H-NbSe2, [84]. In Fig. 3.22 we show the
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result of applying the procedure described above to obtain the form factor of vortices
in 2H-NbSe2. Vortex cores in 2H-NbSe2 have a sixfold star shape (Fig. 3.22a). Using
the image shown in Fig. 3.22a, Equation 3.3 and Equation 3.4, we can obtain the
form factor. The result is shown in Fig. 3.22b. As the vortex is six-fold, it is rather
difficult to understand a radial average and see study its variation with the magnetic
field. However, this example helps us understanding the meaning of the form factor.
By making the procedures described here, we make an average over the shape of all
vortices. Thus, the form factor presents a vortex shape averaged over many vortices.

a b

Figure 3.22: (a), Vortex lattice image in 2H-NbSe2 taken at 0.1 K and 0.1 T [84].
(b), Form factor of the vortex cores in this material using the procedure described
in the text.
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Figure 3.23: In (a), vortex profile taken from the normalized zero bias map vs
normalized distance (r/2a0) for different fields. Point are experimental data and
lines are the fit to Kogan’s model [21]. In (b), we plot the size of the core as a
function of field. The vortex core size does not change with magnetic field. Dashed
line is the behaviour expected for a superconductor in the clean limit with coherence
length of ≈ 4-5 nm. The inset shows an example of the form factor image at 3T.

Now that we first tested the method for obtaining vortex core profiles, we apply
this method to the vortex lattice of Ni doped CaKFe4As4. Fig. 3.23a shows profiles of
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the vortex cores taken from the normalized zero bias conductance maps at different
magnetic fields. Lines show the fit to the model described in subsection 1.2.1
[21]. The resulting vortex core size is plotted in Fig. 3.23b as a function of the
magnetic field. We find that the vortex core has a size of about 7 nm that remains
constant with the magnetic field. As we have discussed earlier, this is expected, as
CaKFe4As4 doped with Ni is in the dirty limit. This behaviour is different than
the 1/

√
H dependence observed in the clean limit, which is also roughly obtained in

pure CaKFe4As4.

3.4 Discussion

As we showed in Fig. 3.8, CaK(Ni0.05Fe0.95)4As4 has an open V-shape
superconducting gap with almost non-existent quasiparticle peaks and a large zero
bias conductance. In the stoichiometric compound, however, the gap is completely
opened with zero bias conductance and has multigap features consistent with s±
superconductivity [22, 76].
Still, in some areas of the parent compound CaKFe4As4, tunnelling conductance

disappears and a finite contribution at zero bias appears near defects areas as a
consequence of pair breaking. The doped system has much more scattering and
pair breaking probably occurs all over the sample. Often, we observe lines where
the superconducting gap is fully closed. This occurs along lines that are seen in
the topography (Fig. 3.15b and Fig. 3.6a) as well as in optical and SEM images
of the surface (Fig. 3.7). Similar lines are observed in pure CaKFe4As4 and it
has been shown that they produce vortex pinning and determine the direction of
the vortex lattice. Here, there seems to be additional disorder in between those
lines, producing a more disordered vortex lattice and strong pair breaking effects
everywhere (Fig. 3.16) [22, 49].
Now the question arises if the zero bias conductance is related to the hedgehog

magnetism or due to extended defects. Probably, the presence of magnetism has a
certain influence, increasing the strength of pair breaking by defects.
In the pure compound, the role of disorder is not as dramatic as in the Ni

doped compound. It has been shown that highly disordered samples of CaKFe4As4
maintain a similar critical temperature [85]. We can thus speculate that, in absence
of hedgehog order, the Ni doping induced disorder should not lead to such a large
influence on the superconducting properties as we observe here. Thus, part of the
pair breaking might be due to the magnetic properties of the Ni doped compound.
Recently, penetration depth measurements have been done in this compound for

Ni concentrations of x = 0.17 and x = 0.34 [86]. They find a nodeless two gap
superconductivity compatible with s± pairing (see table 3.1). Assuming a linear
dependence of the gap values with x, we find that for x=0.049, the superconducting
gap values would be ∆1 ≈ 0.4 meV and ∆2 ≈ 1.5 meV . ∆2 corresponds to the
maximum in the gap distribution we have obtained from our data (see in Fig. 3.8).
∆1 has also an important weight in the gap distribution although we do not
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distinguish a local maximum around this gap value.

Ni doping % ∆1 (meV) ∆2 (meV)
0 -2.76 8.66
1.5 -2.11 6.82
3.4 -1.14 4.14
4.9 -0.4 1.5

Table 3.1: Gap measured in Ref. [86] for Ni doping (x) of 0, 1.5% and 3.4%.
The gap values for 4.9 % Ni-doping are calculated by fitting the gaps
measured in [86] vs x to a linear dependence and extrapolating the gap
value.

The vortex lattice may also be affected by the magnetic order. We can compare
our results with those obtained in the parent compound. Translational order in the
Ni-doped system decays much faster. While in the parent compound, it decays in
3.5a0 in our system, it is suppressed in about 2a0. Also, if we compute the defect
density of the lattice we obtain a 53% of vortices with more or less than 6 first
neighbours, while in the parent system the defect density is 46% of total number of
vortices. Furthermore, pair breaking effect is more important in Ni-doped compound
as it does not happen only in line defects, but we observe it in form of a finite zero
bias conductance over the whole surface. Thus, the doped sample has more defects
than the undoped sample, and this probably influences vortex pinning.
The influence of the doping is also observed by looking to individual vortices.

In the Ni-doped compound, vortex core size does not change with magnetic field
and we did not observe a zero bias peak in the center of the vortex. In the parent
compound there is a dependence of the vortex core size with field, and zero bias
peak is observed. Thus, the Ni doping has decreased drastically the mean free path
going from a clean limit superconductor in CaKFe4As4 to dirty limit superconductor
in CaK(Ni0.05Fe0.95)4As4 .
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a b

Figure 3.24: We show a comparison between the bandstructure (top) and the
Fermi surface (bottom) of the stoichiometric compound in (a), and the 5 % Ni-doped
system in (b) in the paramagnetic state.

A related important point is how the doping level or hedgehog magnetic order
affects the Fermi surface. First, let us compare scattering pattern of both
stoichiometric and doped sample. The scattering pattern of CaK(Fe0.95Ni0.05)4As4
is very different than the pattern found in CaKFe4As4 [22]. The first remarkable
point is the enhanced scattering, pointing out the presence of much more disorder
in CaK(Fe0.95Ni0.05)4As4.
R. Valentí and V. Borisov have calculated the bandstructure of the pure and 5%

Ni-doped compounds with DFT in Fig. 3.24(a-b) respectively. When comparing the
electronic bandstructure in both compounds, we find a slightly increase of electron
pockets and a significant shrink of most hole pockets in the Ni-doped compound.
This is in agreement with the fact that the substitution of Fe by Ni introduces
electron doping in the system. We have compared the qpi vectors obtained in
Fig. 3.13 with the Fermi surface of Fig. 3.24b. We find that these vectors do
not match with any possible scattering vector in this FS. Indeed, our result is not
surprising because the Fermi surface of Fig. 3.24b corresponds to the paramagnetic
state and the qpi measurements are made in the hedgehog AFM state.
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Figure 3.25: In (a) we show schematically the band structure (top) and Fermi
surface (bottom) in the paramagnetic state of the CaK(Fe0.95Ni0.05)4As4. In (b),
bandstructure folded by the hedgehog antiferromagnetic vectors. (c), Bandstructure
in the hedgehog antiferromagnetic state. We have removed the gapped bands in the
Fermi level due to hybridization of electron and hole bands. Squares with continuous
and dashed lines represent the first Brillouin zone in, respectively, the paramagnetic
and Hedgehog antiferromagnetic states.

If instead we assume the existence of the hedgehog antiferromagnetic order, the
magnetic unit cell is doubled. This results in a folding of the band structure along
the AFM vectors as shown in Fig. 3.25 (see subsection 1.3.3). Fig. 3.25a shows
schematically, the paramagnetic Fermi surface of Fig. 3.24b. Fig. 3.25b shows the
result of folding the band structure along the hedgehog antiferromagnetic vectors.
We find that some hole-like and electron-like band cross exactly at the Fermi level.
As we discussed in subsection 1.3.3 these bands hybridize and a gap appears at
the Fermi level. Therefore, these bands will not contribute to the electronic band
structure close to the Fermi level in the hedgehog antiferromagnetic state, and we
could remove these from the discussion. The reconstructed bandstructure resulting
from the folding in the hedgehog antiferromagnetic state is shown in Fig. 3.25c.
Fig. 3.26 shows in detail the FS and bandstructure in the hedgehog

antiferromagnetic state. When we compare this bandstructure with the results
from qpi measurements we observe a good matching between the qpi vectors and
scattering vectors in the FS. In particular, we find that qβ (purple) corresponds to
an intraband scattering vector in the inner hole pocket, and qα (red) and qγ (black)

66



Chapter 3 Coexistence of non-collinear magnetic order with superconductivity

are interband scattering vector between electron and hole pockets. In addition,
we find that the dispersion of these scattering vectors given by the reconstructed
band structure of Fig. 3.26b is hole-like. This is in agreement with results from
qpi, where we observed that the three qpi vectors, qα , qβ and qγ, decrease its
size with increasing energy (Fig. 3.13). Our qpi measurements reproduce the
in-plane anisotropy in qγ also observed in band structure calculations (Fig. 3.26a
and Fig. 3.13). As we find in the experiments, qγ is larger along Γ-M direction than
along Γ-X direction. This simple analysis of the consequences of band-folding calls
for a more detailed account of the bandstructure in the magnetic phases, a recurring
problem which is difficult to address theoretically.𝛤
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Figure 3.26: We show the final Fermi surface (a) and bandstructure (b) of
CaK(Fe0.95Ni0.05)4As4, in the hedgehog antiferromagnetic state. We compare the
scattering vectors obtained in our qpi measurements shown in Fig. 3.13 (coloured
arrows, purple for qβ, red for qα, black for qγ) with the band structure observing a
good agreement.

We should also note that we find a four-fold symmetry of the superconducting
gap in a small part of the bandstructure (Fig. 3.14a). The gap is smallest along
the Γ-M and largest along the Γ-X direction. We compare Γ-X (parallel to a) and
Γ-M (45° to a) directions with the magnetic moment orientation in the hedgehog
phase (Fig. 3.14b). We observe that along the direction of a, the hyperfine field in
the As1 sites (blue) cancel with each other, while, along Γ-M , the hyperfine field
in the As1 sites (blue) have the same orientation. This strongly suggests that the
anisotropy of the superconducting gap is caused by the hedgehog magnetic order,
and confirms the mutual influence of disorder and magnetism in producing in-plane
isotropic properties in many properties of this compound, such as gap anisotropy,
the vortex core shape or vortex lattice symmetry.
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a b

Figure 3.27: In (a) we show the crystal structure of CaKFe4As4. (Ca in red, K in
violet, Fe in orange and the two inequivalent As in green (As2) and blue (As1)). Grey
arrows represent the hyperfine field on Ca and on one of the As sites. Orange arrows
represent the magnetic moments leading to the hedgehog order. In (b) we represent
the same structure. The size of the Ca atoms provide possible local variations of
the charge density. The blue and orange arrows represent the atomic displacements
observed in the Fe and As1 sites, respectively. The atomic displacements and the
associated charge density variations have been proposed in [73] as a consequence of
the symmetry properties of the hedgehog charge order. These variations are only
expected in the presence of a finite magnetic field. The crystalline axis (of the
paramagnetic structure) are shown in the bottom left of (a). Image taken from [73].

Let us further investigate the consequences of the hedgehog order. As was shown
by Meier, [73], there is a symmetry imposed modification of the crystalline structure,
resulting in a slight periodic modulation of atomic positions. Using our real space
imaging capabilities, and the fact that we sometimes obtain atomic resolution, we
have explored this possibility in the locations with atomic resolution.
In Fig. 3.27 we show a sketch of the magnetic moments of the different atoms in

hedgehog phase taken from his thesis [73]. The magnetic moments of the hedgehog
phase are at the iron atomic sites. Furthermore, there are hyperfine fields at Ca and
As1 sites. In presence of a magnetic field, the hyperfine field leads to displacements
on the Ca atoms along the diagonals of the unit cell. In Fig. 3.28 we show an atomic
resolution image taken at 3 T.
We identify two clear peaks in the Fourier transform. One corresponds to the

interatomic spacing between Ca atoms (yellow arrow). The other one, to
√

2 ×
√

2
of the interatomic spacing. Now we can consider two different situations to explain
such a pattern.
First, the Ca lattice might be reconstructed at the surface in a

√
2 ×

√
2 lattice,

in which case, the Bragg peak marked by a white circle in Fig. 3.28b might be due
to such a reconstruction. Then, the peak marked by a yellow arrow could only be
due to the As lattice which should pop up below the Ca lattice. The corresponding
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pattern in real space is shown in Fig. 3.28c. Second, the Ca lattice might show
the charge modulations discussed above, in which case the corresponding real space
patterns is shown in Fig. 3.28d.
The Fourier transforms of both lattices (their modulus, more exactly) are the

same. Both images consist of two interpenetrating square lattices, and the origin
of one of these lattices is just shifted by the black arrow marked in Fig. 3.28d.
The image of Fig. 3.28a is highly disordered. There are missing rows and the
intensities vary as a function of the position, probably due to charge variations
produced by these missing rows. Nevertheless, we can try to see which one of the
two configurations is more likely, by looking at the part of the image which is more
ordered.

a b

c d

Figure 3.28: In (a), a topographic image at H=3 T with atomic resolution. Yellow
arrow indicates the orientation of the lattice. FFT of (a) is shown in (b). we
clearly observe two peaks. One, highlighted by the yellow arrow, coincides with the
interatomic distance of the Ca atoms. Another one is at

√
2 ×

√
2 of this distance.

In (c) and (d) we show two possible scenarios that can produce the same FFT. In
(c), the modulation of the Ca atoms as a consequence of the hedgehog [73]. In (d)
we observe the reconstruction of Ca atoms in red and beneath the atoms of As in
green. Black arrow marks the displacement from (c) to obtain (d).

In order to be able to distinguish between both scenarios we first crop the
topographic image in a free of defects area (see Fig. 3.29a). In b and c, we filter out
all the signals except the atomic and the reconstructed lattices respectively.
As we see, the pattern shown in Fig. 3.29d is more consistent with the lattice
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as shown in Fig. 3.28d. In an STM image, the real difference between patterns
Fig. 3.28c and Fig. 3.28d correspond to different heights. In Fig. 3.28c, there are
two atomic species, Ca and As, with the As atoms located below the Ca atoms. This
should result in dips at the positions of the As atoms. In the image Fig. 3.28d, there is
however a charge density difference, which should also result in a height difference.
Thus, the observable difference between both images is a differing distribution of
peaks and troughs in real space. Notice that this does not occur in the amplitude
of the FFT, which is the same for both cases.

2 nm

Max

Min

Figure 3.29: In (a) we show a crop of the image in Fig 3.28a in an area free of
defects. (b) and (c) are filtered images to only have the contribution of the atomic
and reconstructed lattices respectively. In (d), we sum both of them and we observe
a very good agreement with the picture of a modulation in Ca atoms.

3.5 Conclusions

CaK(Fe0.95Ni0.05)4As4 has a magnetic hedgehog order coexisting with
superconductivity. We have performed the first measurements with STM in
this material. We obtained a gap curve pointing to a s± superconductivity and
with a finite signal at zero bias. We were able to follow the gap with temperature
obtaining Tc of 9.5 K.
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We have also observed vortex lattice showing a very disordered Abrikosov
triangular lattice with pair breaking effects. The vortex core does not change with
magnetic field and we do not observe any zero bias peak in the core of the vortex.
These results indicate that Ni-doped CaKFe4As4 is a dirty limit superconductor.
QPI measurements show three scattering vectors qα, qβ and qγ. qα, qβ are nearly

isotropic but qγ has a four-fold in-plane anisotropy. We have found that these
qpi vectors correspond to scattering vectors in the reconstructed Fermi surface due
the hedgehog antiferromagnetic state. Our qpi data also shows the opening of the
superconducting gap in the reciprocal space. In particular, we have observed that
the gap open in the Fermi pockets associated to qγ has a fourfold in-plane anisotropy,
being maximum along Γ-M direction and minimum along Γ-X direction. Our qpi
results provide microscopic evidence for the coexistence of superconductivity and
hedgehog antiferromagnetic order, and suggest that this coexistence produces the
strong anisotropy observed in the superconducting properties of this material.
We also have identified a modulation of

√
2 ×

√
2 in Ca atoms possibly produced

by a charge order associated to the hedgehog magnetic order.
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4.1 Spatial inhomogeneities in the superconducting phase

Vortices are quantized flux lines that repeal each other, and in order to minimize
the energy, they usually fill all available space. The behaviour of vortices has
some parallels to the behaviour of large arrangements of particles or molecules, and
impacts other fields, such as soft matter. One main consequence of the repulsive
interaction between vortices, is that the vortex density is spatially homogeneous with
small fluctuations due to thermal or quenched disorder [18, 19]. Different vortex
phases have been observed as a result of the balance between vortex interaction,
thermal energy and pinning energy. Among them, we find free-defect vortex lattices
such as the so-called Bragg glass, and disordered arrangements due to point-like
disorder (disordered glass), columnar defects (Bose glass) or thermal fluctuations
(vortex liquid) [87, 29] (see subsection 1.2.2).
Despite of their different arrangements, these vortex phases have in common a

homogeneus distribution along the space. However, a few exceptions have been found
at very low magnetic fields where vortices are far apart and, thus, the intervortex
repulsion is negligible.
For instance, in MgB2 at very low fields (∼ 1 Oe)[88, 89, 90], a highly

inhomogeneous lattice with unequally distributed vortices has been found using
Bitter decoration (Fig. 4.1b). MgB2 is a two-gap superconductor. Authors suggested
a combination of type I and type II superconductivity leading to a peculiar
vortex-vortex interaction. At short distances vortices strongly repeal each other, but
there are also long range weakly attractive vortex interactions. With this particular
interaction, vortex distribution presents a highly inhomogeneous arrangement in
form of clusters of vortices. Authors find a histogram of first nearest neighbour
distances with two peaks, suggesting two different length scales. These length
scales have been connected to the two-band characteristics of superconductivity in
this compound, and a new term, 1.5 superconductivity, was coined to describe the
observed behaviour [91, 23].
Spatially inhomogeneous vortex patterns have been found using neutron scattering

in ultra-pure single crystals of Nb [34, 92], as we show in Fig. 4.1c. Here, the spatial
inhomogeneities are due to the properties of Nb, which is a low κ superconductor
with a relatively large first critical field Hc1. The magnetic field enters well below
Hc1 because of demagnetizing effects (see subsection 1.2.2). Instead of having
interspersed normal and superconducting areas, as in type I superconductors, Nb
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presents areas with and without vortices that form the intermediate mixed state
(IMS) briefly mentioned in subsection 1.2.3. The vortex lattice in the droplets is
highly ordered in a hexagonal symmetry whose principal axes lock to the crystal
lattice [34].

a b c

Figure 4.1: (a) Most common vortex distribution is a triangular lattice filling all
available space. Image taken with STM in W-based films at 2.5 T [29]. (b) Vortex
arrangement in MgB2 [88], there are some voids and the lattice is very disordered.
(c) Simulation of vortex arrangement in ultra-pure single crystals of Nb measured
with small angle neutron scattering (SANS) [34]. Vortices are ordered in hexagonal
droplets of different size. Inset shows the diffraction pattern obtained by SANS.

In type I superconductors, the arrangement of normal and superconducting areas
has also been under debate. In Ref. [93], an interesting parallel is drawn with
the physics of froths. Froths are found in many different systems in nature, in
metallurgy, biological cells, or foams [94, 95]. In such systems, the shape of the
foam is determined by the shape of cells, which change their arrangement and size
with temperature or other parameters. Usually, these changes are due to diffusion
of vapour molecules between cells or drainage of liquid from cell walls. We show an
example in Fig. 4.2a. Other examples are ferrofluids or magnetic domain structures
[96]. In all these processes, cells are modified through mass transport.
Fig. 4.2b shows the superconductor froth-like system. This consists on a

froth-like distribution where the interior of the cells are in the normal state and
the cell boundaries are superconducting. This was named suprafroth as it is
a superconducting froth [93]. This new phase is tuned by magnetic field and
temperature. Authors of this work verified Euler tiling theorem, stating that 6-side
polygon is the most likely to form. They also studied von Neumann law (Fig. 4.2c)
predicting linear dependence between the rate of change of the average area with
the number of sides of a n-fold polygon An. The variation of the area was obtained
with magnetic field and temperature.
In this chapter, we report the observation and characterization of vortex

arrangements at very small magnetic fields showing spatially inhomogeneous
patterns in the type II superconductor β-Bi2Pd. As we will see, the results provide
distinctive features with respect to previous observations. We suggest that these
features might be generic to type-II superconductors at very low magnetic fields and
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have not been detected in previous work.
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Figure 4.2: (a) Classical foam system of bubbles, when the number of bubbles
is increased they touch each other forming polygon of different sizes and faces.
(b) Suprafroth state in the intermediate state of a type I superconductor in [93].
Superconducting regions are shown in black and green regions are in normal state.
In (a) superconductor, the cell size increases and decreases just by modifying the
magnetic field. Increasing and decreasing the magnetic field leads to qualitatively
similar patterns. (c) von Neumann law, describing the cell size in the intermediate
state of Pb. The plot shows the area of the polygon as a function of the number of
polygon sides [93].

4.2 Characterization of β-Bi2Pd

β-Bi2Pd is a binary alloy superconductor first reported by Zhuravlev [97]. This
material is very interesting for local probe experiments, because it has an excellent
and stable surface that can be easily exfoliated [98, 62].
The crystal structure is tetragonal, in the space group I4/mmm with constants

a=3.362(1)Å and c=12.983(1)Å. Schematically, it can be described as a stacking of
square bilayers of ...Pd/Bi/Bi/Pd/Bi/Bi/Pd... along z-axis as Fig. 4.3a shows.
The Fermi surface (FS) of this material has been studied theoretically and

experimentally [98, 99]. The main contribution to the Fermi surface comes from
Pd 4d and Bi 6p orbitals. The FS has four main structures (Fig. 4.3b): a 2D
hole-like deformed cylinder; a small hole-like pocket centred in Γ-point; electron-like
3D pockets overlapping the cylinder and with an extension until the corners of the
Brillouin zone, and lastly a small pocket embedded inside the electron-like 3D pocket.
It was measured with angle resolve photoemission spectroscopy (ARPES), finding
two hole and two electron like pockets named as α, β and γ and δ respectively
(Fig. 4.3c) [99].
Band structure calculations show some anisotropies in the chemical bondings

which produce that Bi/Bi layers are less coupled than the adjacent Bi/Pd sheets.
Therefore, when the sample is cleaved, Bi is the most likely surface [62].
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Figure 4.3: In (a) we show a scheme of the crystal structure of β-Bi2Pd. It has
a tetragonal structure in the space group of I4/mmm. In gray, the atoms of Pd
and in orange the atoms of Bi. In (b) we show the Fermi surface of β-Bi2Pd
from bandstructure calculations [98]. In (c) we show angle resolve photoemission
spectroscopy (ARPES) measurements. The Fermi surface consists on two hole and
two electron like pockets named as α, β and γ and δ respectively [99].

Resistivity measurements [62] in our samples show a critical temperature of Tc= 5
K. Magnetometry measurements indicate a Hc1=0.0225 T [100]. Upper critical field
has also been studied by susceptibility, resistivity and specific heat measurements
detecting a Hc2=0.6 T, λ = 172 nm and ξ = 23 nm [62].
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Figure 4.4: (a) Phase diagram of β-Bi2Pd. Dark brown is used for Meissner
state, light brown for mixed state and yellow for normal state. SQUID-on-tip
(SOT) and magnetic force microscopy (MFM) measurements have been taken
at the temperature/magnetic field values highlighted by crosses and circles. (b)
Superconducting gap of β-Bi2Pd measured at 150 mK with STM. Red curve is a fit
to single gap BCS superconductivity [62]. (c) Specific heat vs temperature at zero
magnetic field (black curve) and under magnetic fields (red curve), from Ref. [100].
In the inset, we show the subtracted electronic specific heat together with a fit to
single gap BCS superconductivity [100].

β-Bi2Pd is a single gap superconductor, as shown by the tunnelling spectroscopic
data measured using STM experiments at very low temperatures (Fig. 4.4b, from

75



Chapter 4 The vortex gel

Ref. [62]) and by the temperature dependence of the specific heat (Fig. 4.4c, from
Ref. [100]).

a b c

100 nm

Figure 4.5: Superconducting vortex lattice measured by STM ([62]) at 150 mK
and 50 mT (a), 200 mT (b) and 450 mT (c). The panels show vortices as bright
spots with normal or near to normal superconducting density of states. White lines
indicate the scale of the images and each are 100 nm in size. The vortex lattice is
well ordered and vortices are generally round. The orientation of the lattice locks
to the square crystalline axis, giving two main orientations (see Ref. [62]). White
arrows show linear features in the images. These features are due to linear defects
in the topography. We discuss this in length further on.

STM measurements also show the topography of the surface, which is atomically
flat and where the Bi atomic lattice can be easily observed [62]. The images show
clear steps, whose size is of an integer multiple of the size of the Bi-Pd groups. The
vortex lattice is clearly observed (Fig. 4.5). Vortices orient along the crystalline axis
of the square atomic lattice [62]. No pinning is observed, with a vortex lattice being
largely hexagonal. The linear features in the topography do not influence the vortex
positions, at least in the field range shown in Fig. 4.5.
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Figure 4.6: Tc as a function of pressure shown as orange points [101] and blue
points [102]. The dashed line corresponds to dTc/dp = -0.025 K/kbar.
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There are also two studies on β-Bi2Pd (Fig. 4.6) with applied pressure [102, 101].
Both of them agree on a linear decrease of Tc when pressure is increased with a slope
of dTc/dp = -0.025 K/kbar. The suppression of Tc with pressure has been proposed
to be due to weakening of electron-phonon interactions induced by the increase in
the phonon frequencies with pressure. The opposite has been recently proposed to
occur if negative pressure could be applied using a gate [103].

4.3 Results

4.3.1 Vortices at low magnetic fields. Imaging.

Here we focus on data measured at low fields in a range of ∼ 100 to 600 Oe with
a magnetic force microscope, MFM [104], and at very low fields in a range of ∼ 10
to 50 Oe with a squid on tip, SOT [12]. All data in this chapter have been taken
previously by Alex Correa and Yonathan Anahory. It is also important to note that
my work starts to be described from subsection 4.3.4 onwards, with the calculation
of the standard deviation and of the fractal properties of the vortex lattice. I
also participated strongly in understanding the features created by the cleaving
process due to fracture. However, my main contribution is from subsection 4.3.4
on, also including the comparison to other systems such as the cuprate Bi2212
superconductor.
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Figure 4.7: (a) Typical topographic AFM image, with a line profile that show a
15 nm step in the inset (green line). (b) MFM image showing the vortex lattice
at 2 K and 300 Oe and its Fourier transform (inset). The vortex lattice is clearly
hexagonal over the whole area. White color denotes the normal phase and black the
superconducting phase. Dark lines and other darker regions in the MFM image are
the result of the non-magnetic tip-sample interaction. The scale bar in both images
is of 1.4 µm. (c) Vortex lattice at 600 Oe and 2 K with a scale bar of size 1 µm.

MFM measurements were acquired using a commercial Low-Temperature SPM
equipment from Nanomagnetics in a 300 K - 1.8 K temperature range. Both
topographic and magnetic information were simultaneously taken (Fig. 4.7(a-b)),
by doing the so-called two pass mode with the cantilever oscillating at its resonance
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frequency. First, topography is measured with a tip-sample distance of less than
10 nm, where Van der Waals (VdW) forces dominate. Resonance frequency is kept
constant and the shift in the amplitude oscillation, due to the VdW interaction
between cantilever and sample, is measured. In order to measure magnetic field,
the tip is lifted up to 100 nm where VdW forces are very small compared with
magnetic forces, and the same scan is repeated. In this case, tip-sample distance
is kept constant using the previous topographic information and the phase shift of
frequency is measured. The tip is previously magnetized by applying a magnetic
field of 1500 Oe at 10 K [53].
Atomic force microscopy images provide flat topographic images with steps of

about 10 nm in size. In Fig. 4.7(b-c) we show some examples of the vortex lattice
at 300 Oe and 600 Oe at a constant temperature of 2 K measured in field cooled
conditions. All of them present a very well ordered triangular lattice indicating a
very similar result to that obtained in the STM measurements (Fig. 4.5). Notice,
however, that here we can scan much larger areas and observe many more vortices.

Figure 4.8: a, Optical image of the SOT at a few tens of µm from the β-Bi2Pd
surface. The SOT reflection on the surface is visible on the bottom part. b-f, 20
× 20 µm2 SOT images that represent the out-of-plane field B(x, y) obtained after
field cooling the sample in magnetic fields of 2 (b), 3 (c), 25 (d), 35 (e) and 50 (f)
Oe. The color scale represents a span of 13 Oe in b-d, 32 Oe in e and 27 Oe in f.
Yellow line is 4 µm long.

At very low magnetic fields, vortex lattice was measured using Squid On a Tip
(SOT). SOT provides high spatial resolution imaging reaching single-spin sensitivity.
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A hollow quartz tube is shaped as a very sharp pipette. Nb or Pb is evaporated in
order to fabricate the superconducting loop of the nano SQUID, and then connected
to Au electrodes [12]. A picture of the tip over the sample of β-Bi2Pd is shown in
Fig. 4.8a. The distance between tip and sample was typically 300 nm. The SOT
used here had an effective diameter of 260 nm, a critical current of 160 µA and white
flux noise of around 800 nΦ0Hz−1. All measurements were performed field cooled at
4.2 K in a magnetic field range of 2-50 Oe, well below Hc1.
The results obtained at low magnetic fields with SOT are very different than

the ordered hexagonal lattices obtained at higher magnetic fields with MFM
(Fig. 4.8(b-f)). Vortices arrange in two different ways. They either are pinned at
linear defects of the sample as the ones showed in Fig. 4.7a, or they arrange filling
the space between those lines. At low fields, from 2 Oe to 25 Oe, vortices filling the
space are not overlapping and they are very disordered creating large vortex free
areas. By increasing the magnetic field, they finally arrange in a triangular lattice
filling most of the space. Vortex density is maximum along the linear defects for all
magnetic fields.

4.3.2 Single vortex profile. Strain and Tc variation

From the different vortex arrangements, there is another striking feature of Fig. 4.8b.
Vortices located along linear defects are less bright than those elsewhere. This effect
is better visible at low magnetic fields, because at high fields, vortices overlap and
the contrast is much more homogeneous. At low fields there is a clear magnetic
contrast. SOT measures directly the magnetic field on the surface. Thus, the change
in brightness means that the magnetic field at the vortex core is smaller along linear
defects than elsewhere.
We can trace a profile along both a defect and a bulk vortex, shown as blue and

black points respectively in Fig. 4.9. In order to fit the magnetic profile, first we
need two parameters: distance between the tip and the sample dSOT and the transfer
function that converts the measured current flowing in the SOT into magnetic field
(dISOT/dB). Transfer function can be calculated by measuring the current created
by a known magnetic field source. We can assume that vortices far from defects,
appearing brighter in the images, have a flux of Φ0 and a λ = 186 nm. We can model
the field B(x, y) as a monopole located at λ below the surface and, therefore, at a
distance of λ + dSOT from the sample. By fitting bright vortex in Fig. 4.8b with the
fitting parameters dSOT and dISOT /dB and averaging the results, we obtain a dSOT
= 270 nm.
Now, we can discuss two representative vortices in β-Bi2Pd, a brighter vortex far

from defects and less brighter close to a defect. We have two fitting parameters,
penetration length, λ, and the vortex flux, Φ. In ref [100] a λ ≃ 186 nm is measured
so, we fix first this value of λ and make the fit varying Φ, obtaining the turquoise
curves in Fig. 4.9. For the vortex far from the defect we obtain a nice fit with 1.06Φ0.
Nevertheless, for the vortex in linear defects a poorer fit is achieved with a value of
0.62Φ0.
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On the other hand, if the magnetic flux is constant and λ is fitted instead, a better
approximation is obtained for both cases as shown by the orange curves in Fig. 4.9.
For vortices far from the linear defects, we obtain λ= 172 nm, a value very similar
to this found in the macroscopic measurements. However, for vortices in the defects
we calculate a value of λ =360 nm.
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Figure 4.9: Vortex field profiles Bz(r) along vortices far from a defect (blue points)
and close to a defect (black points). In turquoise, the fit of the vortex profile with
free parameter the magnetic flux Φ. Vortices far from defects provide an excellent
fit with 1.06Φ0 where Φ0 is the flux quantum. However, to fit the vortices at defects,
we need to considerably reduce Φ down to 0.62Φ0. In orange, the fit of the same
vortex profiles, but using the penetration depth λ as a free parameter. The quality
of the orange fit is significantly better than the turquoise. We find λ = 172 nm
(which is of order of λ measured using Hall probes [100] ) for vortices far from a
defect and λ = 360 nm for vortices at a defect.

Thus, the magnetic flux is the flux quantum, as expected for a simple s-wave
superconductor, and the fit is much more accurate.
Notice that a recent work [105] suggests that circular β-Bi2Pd structures show

flux quantization at half a flux quantum. They discuss, on this basis, the possibility
of p-wave superconductivity. It is unclear, at present, how this anomalous flux
quantization would affect vortices. Therefore, we can conclude that λ is not constant
in the β-Bi2Pd and can increase up to its double around defects areas.
We can associate this change in λ to the stress in the sample. Generally, if dTc/dp

>0 vortices are repelled from areas with internal stress, while when dTc/dp <0 the
opposite occurs. For this sample we have a dTc/dp = -0.025 K/kbar [102]. This
can explain the higher vortex density in the areas with defects. This sample has a
Tc,bulk = 5 K and the experiments are performed at T = 4.2 K. We can calculate the
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change in Tc necessary to double λ with

λ(T ) = λ(0)/

¿
Á
ÁÀ1 − (

T

Tc
)

4
(4.1)

obtaining Tc = 4.38 K. This very subtle change in Tc can increase λ by a factor of 2.
Accordingly to [102], a local pressure of about 20 kbar could drive this small change
in Tc.
This variation in Tc is very difficult to observe directly. In Fig. 4.10, we show the

vortex lattice as a function of temperature, taken using MFM. The images are made
in the same region at 2.75 K, 3.75 K and 4.5 K applying 300 Oe. The lattice is
very ordered at all temperatures with a few dislocations at 2.75 K. There is a white
linear defect located at the bottom of the image at all temperatures. It is probably
caused by a crosstalk between charging effects and the magnetic signal close to a
large step. Crosstalk between signals should not be temperature dependent, and
thus, we expect this feature not to be magnetic. Therefore, we cannot conclusively
argue that this feature is due to a decrease in Tc. Still, there is a vertical white line
in the center of the image only in the highest temperature, possibly indicating a
decrease in Tc in some areas of the sample.
It is very difficult to be more quantitative in the determination of these changes

in Tc with the three techniques used here. MFM has these charging artefacts, SOT
does not allow for accurate temperature control and STM should detect a change in
50 µV which is impossible taking into account the small but finite gap distribution
at 50 µV found in this compound [62].

Figure 4.10: Behavior of the hexagonal vortex lattice as a function of temperature
measured with MFM. (a-c) images taken at 2.75 K, 3.75 K and 4.5 K, respectively
at 300 Oe. The color scale represents the observed frequency shift. Scale bar is 1
µm. The white arrow in (c) highlights the position of the vertical line.

The group of M. Milosevic has made numerical simulations of vortex behaviour
close to linear defects using Ginzburg-Landau theory. The simulations are
parametrized according to the values of λ, measured that are translated into small
changes of Tc close to the defects and weak disorder. The behaviour close to the
linear defect is modelled through a parabolic recovery of Tc at a distance of 2 µm
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away from the step. This simulates pinning potential of the linear defect. The
obtained vortex configuration over a 10 × 20 µm2 area is shown in Fig. 4.11 for two
values of the applied magnetic field. They capture the evolution seen in the images.
At first, vortices occupy the linear defects where superconductivity is suppressed
and their magnetic field is weaker than that of vortices in free defects region. Thus,
a vortex free band is formed between vortices of different brightness. When the field
is increased the size of the vortex free band decreases.

a b

Figure 4.11: Ginzburg-Landau simulations of the behaviour of vortices close to
linear defects at 2 Oe (a) and 15 Oe (b).

4.3.3 Fractographic analysis of the surface

The bonds in the tetragonal structure of β-Bi2Pd are such that the surface is most
likely formed by the square lattice of Bi atoms [98]. The cleaving plane is thus
very well defined and lies perpendicular to the c-axis. There are no indications
of Van der Waals like bonds as in transition metal dichalcogenides. This material
has well established three-dimensional electronic properties [106]. Nevertheless, it
is a fact that it can be easily cleaved using scotch tape [62, 107]. Cleavage occurs
without any residues, as thick sheets of the material are removed when cleaving.
The obtained surface is shown in optical and scanning electron microscope (SEM)
images in Fig. 4.12. The surface is very shiny and has features which are important
for the results discussed in this chapter.
Cleaving or breaking of a surface occurs through the establishment of a fracture or

crack at a few places close to the edges of the sample. The fracture then propagates
as a crack front through the whole sample. The action on the sample during
fracture consists of tear, shear and compressive forces (called mode I, II and III
fracture, respectively, see Fig. 4.12a)[108, 109, 110]. If the action would occur only
along the c-axis, just tear forces that separate layers would be active. However,
the competition between elastic energy and surface energy is in-plane anisotropic,
leading to crack behaviour that depends on the in-plane properties of the material.
This occurs irrespective of the anisotropy of the in-plane vs out-of-plane crystalline
structure, and is even observed in two-dimensional Van der Waals materials [111].
In three-dimensional crystals this issue is even more important. The sample is of

course not perfect and the crack front encounters defects such as small angle grain
boundaries [112, 113]. In a cleaving process using scotch tape, shear forces appear
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even more easily than cleaving with a knife, because scotch is highly deformable.
Shear forces change the direction of crack propagation away from high symmetry
crystalline lines. In addition, fracture produces a release of stress that might
have been left over during crystal growth (for example by the presence of small
temperature gradients). The process of releasing this load is influenced by defects
and imperfections in the crystal. All of this leads to regions with alternating
compressive and tensile stress and causes a twist action (combining shear and tear,
modes II and III in Fig. 4.12a) that might well propagate far below the surface and
influence large areas of the crystal [114].
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Figure 4.12: (a) Forces exerted during the cleavage process of a single crystal. In
the opening mode (mode I) there is tensile stress normal to the plane of the crack.
The sliding mode (mode II) describes shear stress parallel to the plane of the crack
and perpendicular to the crack front. The tearing mode (mode III) a shear stress
parallel to the plane of the crack and parallel to the crack front. (b) Optical picture
of a sample after cleaving. We identify twist hackles (yellow dashed lines), linear
features that seem step edges along crystalline directions (red dashed lines) and the
debonding path, or the direction where the crack front propagated during fracture
(blue lines). (c-e) Magnified areas marked by red rectangles in (b) taken using an
optical camera. (f-h) SEM images. We mark places where the sample forms fully
detached layers by green arrows. Images are taken at the red rectangles shown in
(b) marked by the corresponding letters (f,g and h). Scale bars are of 0.2 mm in
(b), 40 µm in (c), (d), (e) and (g), 50 µm in (f) and 8 µm in (h).
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The features produced by this twist action are called twist hackles and must not
necessarily follow a crystalline direction. They rather correspond to steps that run
parallel to the crack propagation direction. In β-Bi2Pd we observe features that can
be associated to twist hackles. We mark a few of such features by yellow dashed
lines in the Fig. 4.12(b-e). Close to the sample edges, twist hackles have a strong
tendency to start or arrive to the end of the sample at an angle to the surface,
following the crack propagation direction, as we observe in the images (blue lines in
Fig. 4.12b).
However, the crack propagation direction is certainly influenced by the direction

of the crystalline axis. Thus, there are also a number of linear structures at 45 or
so degrees to the twist hackles that can be associated to crystalline axes (we mark a
few by red dashed lines in the Fig. 4.12(b-e)). There are furthermore linear features
perpendicular to all them. Thus, the surface is composed of features resulting from
twisting efforts produced during fracture. The macroscopic twist is compensated by
an arrangement of linear features at right angles or at 45 degrees to each other.
Let us note that we also identify large wrinkles on the surface (red arrows in

Fig. 4.12b). The wrinkles appear close to very large defects (broken or open features
in the Fig. 4.12a). A closer analysis using scanning electron microscopy (SEM)
reveals a large number of separated layers close to wrinkles (Fig. 4.12g). Generally,
step edges appear strongly marked in SEM images (Fig. 4.12(f-h)), suggesting that
there is a separation of parts of the sample (green arrows in Fig. 4.12(g-h)). All this
supports the presence of large twisting effort during fracture.
Our experiments are made close to the center of the sample, in locations showing

no large wrinkles and the tip was carefully positioned away from optically visible
defects. So that we are far from wrinkles produced during cleaving (red arrows,
Fig. 4.12 b). However, the linear structures we observe in the images are certainly
due to twist hackles that are all over the sample. Close to twist hackles, there is
enough strain to modify the local superconducting properties, as observed in the
SOT experiments.

4.3.4 Analysis of vortex positions. Calculation of average deviation

We have Delaunay triangulated the images in order to calculate intervortex distance.
In Fig. 4.13a we show the intervortex distance histograms of all first nearest
neighbours. Histograms show only a single peak with a very broad distribution.
The peak is located exactly at a0 = (4

3)
1/4(Φ0

B )1/2 for all magnetic fields. This shows
that the average intervortex distance follows the Abrikosov distance in the whole
range of the magnetic field (see inset in Fig. 4.13b).
The shape of the histograms is parametrized using the standard deviation (SD)

and it is shown in Fig. 4.13b. Blue points are from SOT and MFM experimental
images, and orange points, from the simulations. We compared these data with
results in Bi2Sr2CaCuO8 in a similar magnetic field range for a vortex glass in
pristine samples (black points) [115] and in a Bose glass in samples with columnar
defects (violet points) [116].
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While in the pristine and irradiated samples SD/a0 remains mostly constant along
magnetic field, in β-Bi2Pd, it diverges at small fields. The blue line is a fit of 1/

√
µoH.
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Figure 4.13: In (a), we show the histograms over the intervortex nearest neighbour
distances for different magnetic fields. Histograms are normalized to give the same
area. The insets show representative SOT (left panel) and MFM (right panel)
images, together with the Delaunay triangulation (lines). In (b) we show the
standard deviation obtained from the histograms, normalized to the intervortex
distance a0. Blue points represent the images taken with MFM and SOT. Orange
points are the simulations. Black and violets points are from images of a vortex
glass and Bose glass respectively [115, 116] . The blue line is 1/

√
µ0H. Inset shows

intervortex distance vs magnetic field.

4.3.5 Calculation of multifractal properties

To understand the vortex distribution in the images shown previously, it is useful
to first introduce fractal and multifractal analysis.
To describe this, it is useful to introduce dimensionality in a different way as we are

used to. We thus introduce the topological dimension, Td. Td is an integer number.
For a dot, it is 0, for a line, it is 1, for a plane, 2, etc. In these simple examples,
Td coincides with the usual concept of dimension. Simple objects, such as a circle,
do not need additional parameters. For example, calculations of the perimeter or
the area of a circle in two-dimensions are straightforward. However, calculating the
length of an intricate and irregular object in two dimensions, as for instance the
perimeter of a coastline, is not straightforward. We can start by choosing an object
defining an area in two dimensions, whose borders are such that the shape of the
border repeats itself when modifying the scale. In such an object with self-repeating
patterns, the perimeter might well go to infinity. In that case, it is useful to introduce
the fractal dimension, TF , which can be understood as the ratio between the length
of the perimeter and the scale used to measure such a length. We show in Fig. 4.14b
an example, which is a Sierpinski triangle with TF=1.6.
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a b c

Figure 4.14: In (a) we show a random binary map. The topological and fractal
dimension are the same and equals to two. In (b) a Sierpinksy triangle is shown
as an example of a monofractal with a fractal dimension of 1.6. In (c) we show an
example of a binary multifractal with a non standard Sierpinsky carpet.

In general, however, a self-repeating pattern might not arise exactly. A coastline
is certainly not repeating itself exactly at all length scales. It has been shown
that the concept of fractal dimension can be extended to systems where there are
strong changes with the length scale and there is, at the same time, something that
produces disorder in the pattern. For example, disordering a Sierpinski triangle
leads to the figure shown in Fig. 4.14c. This figure can be described by what we call
a multifractal, which is simply a set of fractal exponents that lead to the observed
pattern. A fully disordered lattice (Fig. 4.14a) leads to a single exponent, 2, which
coincides with the fractal and topological dimension. Deviations from this exponent,
towards patterns containing strong density variations, can be characterized through
a multifractal analysis.
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Figure 4.15: In (a) the graph f(α) vs α showing the difference between a
multifractal (Fig. 4.14c), a non fractal (Fig. 4.14a) and a monofractal (Fig. 4.14b).In
(b), we show the generalized dimension Dq for the three distributions systems
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To characterize a multifractal system, we mainly use two functions f(α) vs α and
Dq vs q. f(α) vs α is the multifractal singularity spectrum and typically it is a convex
curve with a variable width. Fig. 4.15a shows f(α) vs α for a random (Fig. 4.14a),
monofractal (Fig. 4.14b) and multifractal (Fig. 4.14c) distributions. f(α) is in
random and fractal cases very narrow. For a multifractal distribution, however,
f(α) is broad and distributed along a set of values. Also, the α value corresponding
to the maximum in f(α) gives the fractal dimension. The nonfractal (random in
Fig. 4.14a ) and multifractal (non standard Sierpinski carpet in Fig. 4.14c) is more
or less centred on 2, but the monofractal (Sierpinski triangle in Fig. 4.14b) is centred
in 1.6. Dq vs q gives the generalized dimension for the set of scaling exponents q.
These scaling exponents distort the image highlighting different areas with more
or less concentration in pixels. In monofractal or nonfractal images, a flat line is
expected because its dimension does not depend on q. Both of them are centred
in its fractal dimension. However, for the multifractal, the dimension changes with
the scaling exponent q, and a sort of sigmoidal curve is obtained. Theoretically, q
varies in the range of [∞,−∞] but for the implementation in the calculation, the
limits depend on the convergence of Dq vs q. In our case a convergence in Dq was
obtained in the range of [10,−10]. In order to calculate multifractal spectra, we used
the box counting method [117]. For a given binary matrix of points, as Fig. 4.16a,
we calculate the number of points, mi(ε), in each box of length ε, and compute the
probability of finding a white pixel in each box with:

Pi(ε) =
mi(ε)

∑
Ni(ε)
i mi(ε)

(4.2)

being Ni(ε) the number of boxes with length ε containing at least one point. Now
we introduce the set of exponents q, which provide the dimensions in the multifractal
spectra. We calculate:

Iqε =
Ni(ε)

∑
i

Pi(ε)
q (4.3)

µqi(ε) =
Pi(ε)q

Iqε
(4.4)

where Iqε represents how the pixels are distributed in space. The smaller Iqε, the
larger the homogeneity in the number of pixels inside the boxes of same ε. µqi(ε)
is equivalent to Pi(ε) but taking into account the different behaviour of scaling
exponents q. Then we calculate

Aεq =
Ni(ε)

∑
i

µqi(ε)Pi(ε) (4.5)

which gives the αq value by calculating the slope of log(Aεq) vs log(ε) as shown in
Fig.4.16b. When a discrete set of points is given, as in the case of vortex image,
only the box with a size of ε bigger than minimum distance between first neighbours
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is taken into account. That is why the curves of Fig.4.16(b,c) flatten at small ε. We
also compute

τqε =
∑
Ni(ε)
i Pi(ε)q−1

Nε

(4.6)

shown in Fig. 4.16c. From the slope of log(τεq) vs log(ε) we obtain τq. Finally we
can calculate

f(α) = αqq − τq (4.7)

Dq =
τq
q − 1 (4.8)
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Figure 4.16: In (a) an example with vortex positions indicating how boxes decrease
its size. In (b) we show log(Aεq) vs log(ε) curves in a set from q=-5 to q = 5. The
curves have a clear slope for large log(ε) and become flat for low log(ε). The change
of slope is due to the density of points. We only take in account the points before
the change of slope. This gives us αq. In (c) we show log(τεq) vs log(ε) curves at
the same set of q as in (b). The same behaviour with the size arises and we treat it
similarly. The slope of this curve gives us τq.

We have calculated the generalized dimension Dq and the multifractal spectrum
f(α) for the vortex lattice images (Fig. 4.7 and Fig. 4.8 ). First we have searched
all vortex positions and calculated the images with one at a vortex and zero
elsewhere (method explained in subsection 2.4.1). The results are shown in Fig. 4.17.
Images showing triangular or disordered lattices provide distribution of fractal
subsets centred at α = Dq = 2. When we start observing strong variations in the
vortex density, multifractality increases, which leads to f(α) that is much broader
and whose maximum deviates from 2. Dq also increases for small values of the
multi-scaling exponent q. Thus, the vortex distributions at small magnetic fields
are multifractal, with a probability of fractal subsets that strongly increases when
decreasing the magnetic field, leading to a widening of f(α). On the other hand, the
maximum of f(α) and the value of Dq for small q is larger than two and increases
when the magnetic field is decreased.
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Figure 4.17: Multifractal analysis of the vortex images at very low magnetic fields.
In (a), we show in a the distribution of fractal dimensions f(α) in β-Bi2Pd for
different magnetic fields from 5 Oe to 600 Oe. In (b), we show the generalized
dimension Dq as a function of the set of exponents q. Note that the curves strongly
vary for low magnetic fields.

4.4 Discussion

We have found a new arrangement in the vortex lattice of β-Bi2Pd different to what
has been previously reported in other superconductors. One of the main differences
is the divergence of SD/a0 with decreasing magnetic field. Let us discuss how this
divergence can occur.
SD is defined as:

SD =

¿
Á
ÁÀ 1

N

N

∑
i=1

(ai − a2D
0 )2 (4.9)

where N is the total number of vortex pairs, a2D
0 is the intervortex density associated

to the magnetic field density (∝ B/a2D
0 and thus a2D

0 ∝ 1/
√
B) and ai is the particular

intervortex distance for each vortex pair. Thus, ai can be redefined as a variation of
the intervortex distance as:

ai = a
2D
0 (1 + rand) (4.10)

where rand is a random number. Using Equation 4.10 in Equation 4.9, we have:

SD =

¿
Á
ÁÀ 1

N

N

∑
i=1

(a2D
0 (1 + rand) − a2D

0 )2 ∝ a2D
0 (4.11)
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Therefore, in a pure 2D system we can calculate SD/a0 as:

SD

a2D
0

∝
a2D

0
a2D

0
= const (4.12)

as both of them have the same dependence in field. This explains why in most
systems SD/a0 is constant. However, in our samples at low fields, vortices form 1D
chains pinned in the linear defects but with the magnetic field density distributed
over a 2D area. In the 1D vortex chains the magnetic field density is proportional
to B/a1D

0 , and thus, a1D
0 ∝ 1/B. Therefore:

SD

a2D
0

∝
a1D

0
a2D

0
∝

√
B

B
∝

1
√
B

(4.13)

This result agrees with our observations. This is an important result because it
shows how vortex positions are influenced by the linear pinning potential.
Now, let us discuss the differences between the vortex arrangement observed in

β-Bi2Pd and the spatially inhomogeneous vortex phases introduced in section 4.1.
It also shows that the origin of the fractal distribution is in the presence of vortices
forming rows and distributed randomly along the rows in a 2D plane.
In MgB2 there are two characteristic distances in the vortex pattern with two

peaks in the histogram of nearest neighbour vortex distributions [88]. It has been
argued that the vortex stripes are independent of the crystal lattice and therefore
cannot be related to strong pinning. Instead, the peculiar vortex distribution is a
consequence of the two-gap superconductivity of MgB2 [88]. The vortex patterns
we report here for β-Bi2Pd are different. At very low fields, the patterns do contain
vortex stripes, clusters and vortex free regions. However, the intervortex distances
do not cluster around two values as seen in MgB2. Additionally, as it was shown in
[62, 100, 118], β-Bi2Pd is a not a multi-gap superconductor.
Also, we showed the example of the intermediate state (IMS) in a single crystal

of Nb. Here, the histogram of nearest neighbour vortex distances presents two
clear peaks. On the contrary, we observe only one very broad peak in β-Bi2Pd.
Furthermore, there is no evidence of multifractality in the IMS as Fig. 4.18 shows
(blue curve). This can be expected because the vortex lattice remains locked to the
crystal lattice, so that it remains ordered within each vortex cluster and all clusters
have vortex lattices with the same orientation. Furthermore, there are no density
fluctuations. There are just regions sharing all the same vortex density (coinciding
here with Hc1) and regions with no vortices [34].
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Figure 4.18: Multifractal behavior of the vortex lattice in β-Bi2Pd , compared
to the intermediate mixed state (IMS) , YBaCuO at very low magnetic fields and
Bi2Sr2CaCuO6 in the Bose glass phase. At the right, from top to bottom images of
IMS [34], YBaCuO [119] and Bi2Sr2CaCuO6 [116] respectively with the same border
color as the curves.

In addition, we can also compare our results with an image taken in YBaCuO
(Fig. 4.18 in pink) at a magnetic field three orders of magnitude below the magnetic
fields we discuss here [119]. The standard deviation SD/a0 is of 0.4, and thus, of
the same order as the values found in the vortex lattice of β-Bi2Pd. Additionally,
an image in Co-doped BaFe2As2 also shows a similar behaviour [120]. Furthermore,
when strongly anisotropic pinning centres are introduced in YBaCuO, vortex lattices
showing voids and linear structures have been reported. These images show
multifractal properties (Fig. 4.18 in pink) and relatively large values of SD/a0.
These systems are orthorhombic. Thus, they have twin boundaries or can show
under extreme conditions strain induced domains [119, 121]. Therefore, they can
provide patterns that are repeatable and situations with large strained domains.
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Figure 4.19: In (a) and (b) we show the Voronoi tessellation of images at 6 G (a)
and at 25 G (b). In (c) we show the percentage of cells versus the number of sides
of each Voronoi cell n. In the hexagonal lattice, n = 6. In (d) we show the average
of the area of all cells in each image with a certain n versus n.

We can also compare our system with the suprafroth system discussed in the
introduction of the chapter [93]. Both systems are radically different because in
the intermediate mixed state there are no vortices but instead we find cells of
normal material surrounded by superconducting material. The situation observed
in the suprafroth might also show multifractal features in the distribution of the
superconducting phase, but is fundamentally different. To gain further insight by
comparing distributions and analysis, we have calculated the Voronoi pattern of
vortices in our sample. In Fig. 4.19 we show two images at low magnetic fields and
the area occupied by polygons as a function of the number of sides of the polygon.
As in froths, we observe that the area increases with the number of sides of the
polygon (Fig. 4.19d). However, the increase scales with the magnetic field, or the
area occupied by each single vortex. In the Abrikosov phase, at higher fields, there
will be an equilibrium with all cells with six sides. Nevertheless, at very low fields,
in β-Bi2Pd, we mostly observe two different phenomena. In areas where vortices are
pinned, Voronoi cells have mainly four or five sides (Fig. 4.19c) and they occupy a
small area. On the other hand, vortices areas free of defects have mainly polygons
with 6 or more sides in bigger areas. The difference with the intermediate mixed
state is in particular the organization in a scaffold-like structure of pinning centres,
providing the new multifractal behaviour. The superconducting to normal area
ratio just evolves with the magnetic field in the intermediate state, and the pinning
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properties are not well defined and they are highly magnetic field dependent. Apart
from the comparison to the suprafroth, the Voronoi tessellation in Fig. 4.19 provides
a different perspective of the results shown. For example, the number of sides of
the polygons clearly peaks at 6 at high magnetic fields, but goes over to 4 at very
low magnetic fields. This shows that the density of vortices along the linear pinning
centres is very large. The increase in the area occupied by each vortex is noisier at
low magnetic fields (Fig. 4.19d), suggesting that vortices with six or more sides are
located randomly in between linear pinning centres.
The differences found with other systems make us propose that one could coin a

new term for the observed behaviour in β-Bi2Pd, which would be a vortex gel phase.
The vortex gel has large voids distributed very inhomogeneously in space and we
name it as the gel phase because of the similarities with gels and froth systems.

4.4.1 Conclusions

In this chapter we present an analysis of vortex images in terms of multifractal
properties, that shows an interplay between the geometry of defects and the vortex
lattice that we deem to be new. We showed the arrangement of vortices in a wide
region of magnetic field. Our analysis unveils the structural properties of this new
vortex arrangement, governed by organizing principles that combine pinning centres
as scaffolds and ever present Meissner screening that promotes large voids in the
vortex lattice.
We show a divergence in SD/a0 along with a multifractal spectra. Through a

detailed comparison with other vortex systems, we have shown that the properties
observed in β-Bi2Pd are different from previous observations in the same field range,
particularly at the smallest applied magnetic fields.
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5 | Is vortex lattice
hyperuniform?

5.1 Hyperuniform vs amorphous

Hyperuniformity is defined by the total suppression of density fluctuations at
long distances [122]. With this definition, the first system we can think of as a
hyperuniform is a crystal. A crystal has a trivial hyperuniform configuration because
density is exactly the same at every length scale. However, there are other systems
that could be disordered hyperuniform. Some authors propose that disordered
hyperuniform systems might have interesting applications, from the behaviours that
can be deduced for a system with no density fluctuations, as a crystal, but without
anisotropy, as a gas or a liquid [123].

ba

d
± ad

Figure 5.1: In (a) we show a random distribution of points (black dots) in a 2D
square. With N points in a square of size A, the average distance is d=

√
A/N .

The positions (x,y) of the dots have been generated randomly. In (b) we show a
hyperuniform distribution of points (black dots). The number of points and the area
are the same as in (a). The positions of the dots have been generated by starting
with a square lattice of interparticle distance d (black dots in the lower right inset)
and adding to each square lattice point a random vector (x,y). The coordinates of
the vector x,y ≤ ± ad, where a=1 here.

An interesting and probably the first proposal for a disordered hyperuniform
distribution came with an analysis of the distribution of photocells in the eyes of
some birds. In that case, cell structure of the eyes is made in such a way as to seek to
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close-pack photocells. A fundamental aspect of vision is that photoreceptors must
be distributed regularly to achieve a uniform sampling of the field of view [124].
In 2D, the arrangement best filling the available space of spherically symmetric
objects is a hexagonal lattice. But birds have several kinds of photoreceptors and
the arrangements is complicated. How photoreceptors self-organize to build a regular
distribution is under debate. A hyperuniform configuration is one possible solution
when the photoreceptors build complex multicomponent objects [125]. One can then
ask the question whether laws in physics, and not only evolutionary laws in biology,
can produce a hyperuniform distribution or not. This is still debated and there are
numerous works addressing this issue [126, 127, 128].
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Figure 5.2: In (a) and (b), we show the structure factor (S(k)) for random and
hyperuniform distribution respectively. We observe how S(k) in the hyperuniform
image tends to zero at small k while for the random distribution it is totally flat.
(c) and (d), show the number variance for respectively random and hyperuniform
distributions in real space. The number variance σ2 grows with R/d with an
exponent β=2 (c). β is the same as the dimension (here 2) in a random distribution.
In a hyperuniform distribution, however (d), β is the dimension minus one and rather
grows with the perimeter instead of the area.

In Fig. 5.1a we show an example of a random configuration calculated by a
point-coordinate random generator and in Fig. 5.1b we show an example of a
hyperuniform arrangement. We have obtained the hyperuniform arrangement by
creating a square grid with a lattice constant d and placing a point at the center
of each square (black dots in the inset of Fig. 5.1b). As we show in Fig. 5.1,
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we then add a vector (x,y) with random coordinates x, y ≤ ±ad, and a = 1 using
periodic boundary conditions [129]. As we can see in Fig. 5.1, both distributions
look randomly and their Fourier transforms, as we show below, are mostly flat.
However, the hyperuniform distribution has no density fluctuations for length scales
above d.
Indeed, the structure factor, which is the radial average of the Fourier transform,

is flat in a random distribution but drops to zero for wavelengths k<1/d in a
hyperuniform distribution as the one shown in Fig. 5.1. S(k) for k<1/d can be
written as

S(k) ∝ kα (5.1)
where α is a number, often of order of 1. In Fig. 5.1b we find α=1.3 (Fig. 5.2b).
It is useful to write the number variance, in real space, as :

σ2(R) =< N2(R) > − < N(R) >2∝ Rβ (5.2)

where N(R), in a 2D system, is the number of points inside a circumference
of radius R. In the random system the number variance grows with the area and
therefore, σ2(R) ∝ R2 (Fig. 5.2c). In a hyperuniform system (Fig. 5.2d), instead,
we can say that the noise or fluctuations in the particle density do not increase with
the area, but with the perimeter. In Fig. 5.1b, each random number is distributed
over a single cell and we will have σ2(R) ∝ R. Generally the number variance in a
hyperuniform system grows slower than its dimension, D, as σ2(R) ∝ RD−1 but in a
random system, number variance grows as a power law of its dimension σ2(R) ∝ RD.
The relation between α and β is shown in Table 5.1. The details on the methods
we used to calculate S(k) and number variance in images of the vortex lattice will
be explained in the next section.

S(k) exponent (α) σ2(R) exponent (β)
α>1 β = D − 1

1<α< 0 β = D − α

Table 5.1: Relation between exponents α and β for the structure factor and number
variance in hyperuniform systems [122].

Superconducting vortices may be a good candidate to find a disordered
hyperuniform system. Vortices repeal each other usually forming hexagonal
(or square) lattices and interact with locations with depressed superconducting
properties. The latter act as pinning centres and attract vortices. Pinning centres
are usually distributed randomly. However, the intervortex interaction favours a
triangular lattice with regular spacing a0. In three dimensional samples, flux lines
bend at pinning centres and in two dimensional systems flux lines are displaced
[130, 131]. The competition of pinning potential and intervortex interaction can
affect strongly the ideal hexagonal lattice.
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In most part of the phase diagram the vortex lattice is ordered although pinning
interaction produces the quasi long range translational order, (the so-called Bragg
glass phase, see subsection 1.2.2). At small magnetic fields vortices are very far from
each other and their interaction is small [31]. Furthermore, at higher temperature,
close to Tc, vortex lattice melts leading to the vortex liquid which is a dynamic
tangle of vortices [132] (see subsection 1.2.2). Often, experiments at low magnetic
fields are made by cooling from the liquid phase, which results in quenched vortex
arrangements that can be highly disordered induced by the pinning potential (see
subsection 1.2.2). In field cooled conditions at intermediate magnetic fields, the
lattice is often ordered. However, interaction with a disorder potential can lead
to the appearance of disorder with an order-disorder transition [133, 134] observed
in a two-dimensional superconductor with a very weak random disorder potential
[29]. Furthermore, disordered vortex lattices appear in systems with strong pinning
[22, 42, 135]. Within the vortex lattice phase diagram, it is interesting to look into
whether there can be a disordered hyperuniform vortex lattice or not.
Efforts in this direction were done by Reichhardt et al. [136]. They did not address

the question of to what extend the vortex lattice can be hyperuniform. Instead,
they investigated if a hyperuniform arrangement of pinning centres, as opposed to a
random arrangement, can lead to improved pinning properties. They find an increase
in the critical current for a hyperuniform vortex distribution. The question about a
hyperuniform vortex lattice has been also addressed in pristine, electron irradiated
and heavy ion irradiated with columnar defects Bi2Sr2CaCu2O8+δ [137]. In pristine
and electron irradiated samples, the lattice is very ordered, and therefore, the same
hyperuniform properties as in an ordered crystal are found. But the vortex lattice in
samples with columnar defects may be consistent with disordered hyperuniformity.
However, the error in the determination of the exponent α is above 50% and thus,
whether hyperuniformity with α ≥ 1 is present or not remains unclear. All these
experiments were performed with Bitter decoration at very low magnetic fields (<100
G) where vortex interaction is small.
Here we analyse vortex lattice images at high magnetic fields, where intervortex

interactions dominate, and in lattices that have not crossed the liquid phase. We
chose vortex lattices with some degree of disorder obtained in zero field cooled
conditions in Refs.[29, 22, 42, 135]. Our choice is determined by the availability
of experiments showing large amounts of vortices and because these include cases
with uncorrelated disorder, correlated disorder and symmetry breaking disorder.
These lead to hexagonal lattices in the Bragg glass regime, polycrystalline lattices
as well as fully disordered lattices. We also add new data obtained in a W-based
thin film with a correlated arrangement of pinning centres and analyse the situation
of a thin film with a highly out of equilibrium vortex configuration consisting of
anti-hyperuniform behaviour, with strong density fluctuations [138, 31]. The latter
shows a behaviour very similar to the gel found at low fields in β-Bi2Pd (chapter 4).
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5.2 Structure factor and number variance

As mentioned before, there are two ways for studying hyperuniformity in a system.
We can do it in the reciprocal space by computing the structure factor S(k) or in
the real space using the number variance, σ2(R). We have implemented a program
in MATLAB for obtaining the structure factor and number variance using as input
the vortex coordinates. Vortex coordinates are obtained using the method described
in subsection 2.4.1.

Calculation of Structure factor

First, let us discuss how we can calculate the structure factor. The structure factor
in a system with identical points is defined as [139]:

S(k) =
1
N

N

∑
i=1

N

∑
j=1
ei2πk(ri−rj) (5.3)

We can also write the coordinates of vortices in a lattice as

I(r) =
N

∑
i=1
δ(r − ri) (5.4)

where N is the number of points in the ri positions. In order to compare with
Equation 5.3 we transform I(r) to reciprocal lattice as:

I(k) =
N

∑
i=1
∫

∞

−∞

δ(r − ri)e
i2πkrdr =

N

∑
i=1
ei2πkr (5.5)

Thus, we can combine Equation 5.5 and Equation 5.3 and rewrite S(k) as:

S(k) =
1
N
I(k)I(k)∗ =

1
N

∣I(k)∣2 (5.6)

Equation 5.6 shows that we can compute S(k) with the Fourier transform of a
binary image. Furthermore, as we are only interested in the isotropic decay of S(k),
we can reduce the problem to 1-D taking the radial average of S(k) versus k

S(k) =
1
N

∣I(k)∣2 (5.7)

where ∣(I(k))∣2 is de radial average of ∣(I(k)∣2. In order to follow the steps above
we have implemented a program in MATLAB to calculate S(k). As our input
parameter are the vortex coordinates, first, we have to transform the coordinates to
a square matrix of size Npixels ×Npixels and length L.
Then, we compute a binary matrix, I(r), where I(r)=1 for r = ri and I(r)=0 for

other positions. We obtain I(k) by using a 2D-Fast Fourier Transform (2D-FFT)
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of the matrix I(r). Finally we calculate S(k) with Equation 5.6.
Again, we use Equation 5.7 to calculate S(k). Finally, we can plot S(k) as a

function of k in a logarithmic plot and normalize k to the Bragg peak of the lattice,
in order to compare data obtained at different magnetic fields.
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Figure 5.3: In (a), we show S(k) as the square of the Fourier transform of the
binary matrix in the inset. Lattice is disordered without a triangular arrangement.
We obtain a radial average as shown in (b).

Calculation of the number variance

With the definition of σ2(R) given in Equation 5.2 we have also implemented a
Matlab code to calculate σ2(R). In order to obtain N(R) we calculate a set of
random circles of different radius as shown in Fig. 5.4. We impose two conditions.
First, circles must be complete, so the centre of the circle of radius R is inside
a square of size [L-R, L-R] centred on the image, being L the lateral side of the
image. Secondly, circles cannot overlap. Thus, the number of circles we can establish
decreases rapidly with the radius. In Fig. 5.4b, we show an example of the number
of circles as a function of radius normalized by the length of the image, L. For small
values of R, we cut the number of circles to 1000 because otherwise it would be
computationally costly too. When the radius is about 30% of the lateral size of
the image, the number of circles is only 1. In Fig. 5.4c we show in black the result
obtained using this method.
We generate all circles randomly and work in such a way as to take into account the

same number of circles for each radius R. We can see this in more detail in Fig. 5.4c.
First, for distances below the average interparticle distance, a0, the calculation
does not provide us useful information, as we are interested in fluctuations at large
distances. Second, when we are at very large distances, of order of the image size,
and we draw a random assignment of positions to place circles to do the calculations,
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we can only find a few circles. This implies that the calculations are noisy (black
line in Fig. 5.4c). To reduce the noise, we repeat this assignment a certain amount
of times and then make the average. We aim at making at least a hundred circles
for each R. This is achieved either by just taking one random assignment for small
R, or by increasing the times we randomly assign circles and making the average for
large R. This allows us to obtain σ(R) with the same noise level for all R (red line
in Fig. 5.4c).
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Figure 5.4: In (a) we show a random distribution of points (black dots) in a 2D
field of view. We also show circles around randomly chosen positions. Circles of
the same radius have the same color (blue, orange and brown for increasing radius).
In (b) we show the number of circles (black points, joined by a line for clarity)
we can draw by randomly generating their centres as a function of the radius of
the circle R normalized to the lateral size of the image L. We mark with an arrow
the average interparticle distance a0. Below this distance, we can place a nearly
arbitrary number of circles, so that we fix the value to the one found at a0, slightly
below 1000. When we increase R, the number of circles we can place in the field of
view decreases, until we can just place one circle when R is about a third of L. In (c)
we show (points joined by a line to help the eye) the number variance calculated in
two situations. In black we show the variance calculated for a single set of random
numbers giving the centres of the circles generated for each R. In red we show the
variance calculated as the average of the results corresponding to a set of random
numbers that increases progressively when increasing R, in such a way as to have
the same number of circles at each R. The number variance has no meaning in the
frame of our discussion for R/L>3 and R<a0.

5.3 Results

Here, we present the results obtained in different materials. They are ordered by
the degree of hiperuniformity. The graphs in the left show S(k) and have a dashed
line indicating a fixed exponent of α=1 to compare the decay of S(k) when k → 0.
As shown in table Table 5.1 , if α<1, then the growth of σ2(R) has an exponent of
β = 2 − α, however, if α>1, the exponent in σ(R)2 is β = 1. In our data we fit the
exponent β of σ2(R) and compare the result with the decay in S(k).
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Figure 5.5: In the left and right panels we show, respectively, S(k) and σ2(R) as
points. Lines join points to help the visualization. In the middle panels we show
the binary images used in the calculation of the left and right panels. Black dashed
lines are power laws, with fixed exponent α = 1 in S(k) (left panel) and the best
fit for exponent β in σ2(R). Data in (a) are for the vortex lattice in Co-doped
2H-NbSe2 [135] and in (b) for a W-based superconducting thin film with strong
thickness variations. In both cases, the vortex lattice behaves as a polycrystal,
with hexagonal bundles observed at all magnetic fields. As we show in the images
of vortex positions (central panels), in these cases, there is short range hexagonal
order, which leads to the hyperuniform properties.

We present in Fig. 5.5a the results obtained in Co-NbSe2 [135] at three
different fields. In pure 2H-NbSe2 it would make little sense to study disordered
hyperuniformity as the lattice is triangular [84, 140]. According with [135] Co-doping
leads to magnetic scattering and vortex pinning in 2H-NbSe2. Authors measure
reduced values of Tc and of Hc2 (Tc = 5.7 K and Hc=3.4 T), so that there is a
strong effect of the Co-doping. At the three magnetic fields, we find an ordered
lattice, but with different domains. We fit σ2(R) of Fig. 5.5a (right panel). The
exponent β=1 and therefore α >1. S(k) is decaying faster than the dashed line. We
have to take into account that FFT at extremely low k can have some noise, and
therefore, we have to observe the behaviour in the change of slope after the Bragg
peak. In this material we find that S(k) and σ2(R) are consistent with a trivial
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hyperuniformity as the vortex lattice is formed by ordered domains.
In Fig. 5.5b we present results for a W-based thin film with strong and disordered

thickness modulations. At low magnetic fields, these lead to the formation of
hexagonal vortex bundles, as in Co-doped 2H-NbSe2, and we obtain similar results.
The vortex lattice is hyperuniform, but not fully disordered. The hyperuniform
properties are due to the local hexagonal order.
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Figure 5.6: The figure follows the same representation as the previous figure. Left
panel, S(k), middle panels a few images of vortex positions and right panels σ2(R).
Dashed lines are fits in right panels and α=1 in left panels. Data (points) are now
in LiFeAs from [42] (a) and in a W-based thin film which is perfectly uniform from
[29] (b). The latter implies that there is practically no pinning. Note that, whereas
the lattice is mostly ordered in the W-based system (b), it is highly disordered in
LiFeAs (a).

In Fig. 5.6a we present the results of the pnictide LiFeAs with Tc=17.5 K and
Hc2=15 T for magnetic fields at 2 T and 8 T [42]. In this work, an image of H=0.5 T
is also presented but an ordered lattice is found. Here we chose images of disordered
vortex lattices, from 2 T onwards. We see that there are no hints for local hexagonal
arrangements, the lattice is fully disordered. Nevertheless, we find a value for β that
is low and close to 1, namely 1.2 and 1.3 for 2 T and 8 T, respectively. Thus, this
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vortex lattice is close to the disordered hyperuniform behaviour.
In the W-based thin film, which shows now practically no thickness changes as

a function of the position, we find that the vortex lattice is strongly ordered until
about 5 T. There, the lattice rapidly disorders, as described in [29]. Accordingly,
the exponent β corresponds to the (trivial) hyperuniform behaviour of a nearly
hexagonal vortex lattice until about 5 T. For the highest magnetic field, when the
lattice loses all kind of order (translational and orientational, see [29]), the exponent
β strongly increases, deviating from hyperuniformity. Therefore, vortex positions
are randomized. Note that at this magnetic field, the lattice is close to Hc2, so that
it is very soft.
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Figure 5.7: We follow the same presentation as in the previous two figures. Here
we use data of very disordered vortex lattices in Ni-doped CaKFe4As4 (a) and in
pure CaKFe4As4 (b) taken from [22]. We see strong deviations from hyperuniform
behaviour, towards random distributions. As in previous figures, dashed lines in
right panels provide the fits to the β shown and in the left panel we show α=1.

Thus, we have two opposing examples of disordered arrangements without any
clear sign of a tendency to form local ordered triangular arrangements. In LiFeAs,
the disorder appears at magnetic fields far from Hc2 and the vortex lattice is still stiff.
This favours absence of long range density fluctuations and thus hyperuniform-like
behaviour. The opposite occurs in the W-based thin film, where the lattice is much
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softer and has a tendency to lose hyperuniformity and become random.
The results of the pnictide CaKFe4As4 with and without Ni-doping (Tc ≈ 10 K

and Hc2 ≈ 20 T and Tc ≈=35 K and Hc2 ≈ 92 T respectively) [22] are shown in
Fig. 5.7(a,b) respectively. As we explained in chapter 4, the vortex lattice is very
disordered. Here we find β > 1.5. At 3 T in Fig. 5.7a the exponent is the lowest
with β = 1.5, but at 4 T in Fig. 5.7a and 5 T in Fig. 5.7b β = 1.7. We also observe
a decay of S(k) slower than α=1.
In Fig. 5.8 we show completely different results than those shown before. In a,

the material studied is a W-based thin film with a nanofabricated array of dots [141]
and in b, we show the results in β −Bi2Pd discussed in chapter 4. In both of them
σ2(R) grows with β = 3. This exponent is much larger than in a random system and
implies antihyperuniformity [122]. This term was coined within the development
of hyperuniform formalisms to describe systems in which the density fluctuations
increase with distance. It includes fractal distributions and distributions with large
empty spaces.
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Figure 5.8: Using the same representation as in the three previous figures, we
show here results in a nanostructured W-based thin film (a) [141], and at very low
magnetic fields in β-Bi2Pd [31] (b). Notice the presence of voids in the distribution
of vortices (middle panels). This provides large values of β. The distribution is thus
random with in addition strong density fluctuations.
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5.4 Discussion

We have calculated the parameters that characterize hyperuniformity in a variety of
materials with different properties and pinning potentials obtaining different values
of the exponents α and β. We are interested in the possibility to have disordered
hyperuniformity in the vortex lattice.
Let us discuss the origin of pinning in all of the examples we show here. 2H-NbSe2

samples doped with Co are measured very close to Hc2 in the so-called peak effect
[42]. Pinning is due to the Co impurities, distributed randomly in 2H-NbSe2.
The Co distribution in 2H-NbSe2 leads to the formation of a polycrystalline vortex

lattice, at least in the magnetic field range presented here. In the W-based thin
film with strong pinning, the situation is very similar, the vortex lattice is also
polycrystalline. In both systems, we find hyperuniform behavior. However, the
presence of a strong tendency to form a triangular arrangement is visible in both
cases, and we cannot speak about disordered hyperuniform arrangements.
In the W-based thin film with no pinning centers, the vortex lattice is hexagonal

and thus trivially hyperuniform at low magnetic fields. When the lattice disorders
(mainly due to strong lattice softening), a strong tendency to show a random
distribution appears. Thus, the tendency here is away from hyperuniform behavior.
In the LiFeAs system, the vortex lattice is disordered in a wide range of magnetic
fields. In particular, in a range of fields where the lattice is stiff (it is far from Hc2).
There, we find the closest behaviour to disordered hyperuniformity.
Finally, the results in the CaKFe4As4 family of systems show strongly disordered

lattices at all magnetic fields. The vortex lattice is at magnetic fields much below
Hc2 there, even more than in LiFeAs. However, pinning seems to be too strong for
hyperuniform behaviour to prevail and vortices show random behaviour.
To further analyse our results, we have calculated the first neighbour distance and

the corresponding standard deviation SD from the average distance, as well as the
number of defects. In Fig. 5.9a we plot the exponent β vs SD and in Fig. 5.9b β vs
the defect density. From these plots, we can gain further insight.
β=1 implies hyperuniform behaviour and β=2 random behaviour. If we take the

distribution of Fig. 5.1a, we see that when β=2, the SD is large, on the order of
the average interparticle distance, and the density of defects is equal to one. In a
perfectly ordered lattice, β=1, the SD is zero and the defect density is zero too. In a
disordered hyperuniform lattice, as the one shown in Fig. 5.1b, β=1 but SD is large,
on the order of the average interparticle distance, and the density of defects equals
one.
Thus, if we start from an ordered lattice, we are close to β=1 and SD and

defect density close to zero. From Fig. 5.9 we see that this occurs when there
is a perfect hexagonal order (W-based thin film without pinning). When there is a
polycrystalline arrangement (Co-NbSe2 and W-based thin film with strong pinning),
the SD is small but the defect density can be quite large. When we have a disordered
vortex lattice, which is mostly random, we expect β to be close to 2 (or tending

105



Chapter 5 Is vortex lattice hyperuniform?

towards 2) and large values for SD and for the defect density. This indeed occurs
for the fully disordered lattices of the CaKFe4As4 compounds and in the W-based
thin film without pinning close to Hc2.
For disorder hyperuniform, or close to hyperuniform behaviour, we expect β close

to 1 and large values for SD and for the defect density. In LiFeAs we observe β close
to 1 and a very large defect density.
Furthermore, our results (Fig. 5.9) show that there might exist a relationship

between β, SD and the defect density that we did not anticipate.
First, there are no data with β=1 and SD larger than about 20% of the

intervortex distance. This corresponds to a Lindemann criterion. Above a certain
fluctuation amplitude, the ordered lattice is unstable. Clearly, we could not find any
hyperuniform distribution that overcomes Lindemann criterion. Instead, the close
to hyperuniform behaviour of LiFeAs occurs with SD being very small. Second,
there is a minimal defect density associated with the presence of disorder of about
30%. Qualitatively, this means that a lattice can have a large amount of defects
but remain ordered to some degree (in the form of polycrystalline arrangements).
When the defect density increases above about 30%, we can no longer speak about a
polycrystalline arrangement. Interestingly, at this point, β deviates from one and it
increases continuously with the defect density. If all observed vortex lattices would
be perfectly disordered hyperuniform, β would remain close to one when increasing
the defect density. Thus, again we see that close to hyperuniform behaviour is found
in LiFeAs where the defect density remains large but close to 30%
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Figure 5.9: In (a) we plot a the β exponent of σ2(R) as a function of the standard
deviation normalized by the intervortex distance SD/a0. In (b), we plot the same
β exponents with respect to the defect density in the lattice calculated by the
percentage of the number of vortices with a number of first nearest neighbour
different than 6.
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The relation between β and SD as well as the defect density shows that the increase
in density fluctuations is established by the local variations in the vortex positions
(SD) and by the number of defects appearing in the lattice (defect density). The
tendency of these in a vortex lattice is clearly towards random behavior. Only in
particular cases, with stiff and disordered vortex lattices, hyperuniform behaviour
might pop up. The latter can have strong defect densities, but small values of the SD
and is thus fundamentally distinct from the mathematical construction of Fig. 5.1b.
We can also wonder which kind of pinning centres provide long range correlations

and a tendency to form hyperuniform arrangements. One trivial answer is those that
produce breaking of the lattice into hexagonal crystallites. If the density of defects
is large enough or the lattice soft enough, this leads to random disorder, instead of
hyperuniformity. A relatively hard lattice, strongly interacting with pinning centres
at the level of individual vortices, as seems to be the case in LiFeAs, could be
the best situation to maintain long range correlations in highly disordered vortex
lattices. In other words, the elastic properties of the vortex lattice need to favour a
very homogeneous field distribution, while allowing for a sufficient degree of disorder.

5.5 Conclusions

In summary, we have analysed the possible presence of disordered hyperuniform
vortex lattices in superconductors in high magnetic fields. The vortex lattice shows
a strong tendency away from random behaviour in soft vortex lattices with point like
random pinning centres. The combination of long range correlations and disorder
comes together to favour situations with a homogeneous magnetic field at large
length scales and pinned vortices. This was anticipated in calculations in Ref. [142]
and might be used to establish a collective response to vortex motion in a disordered
vortex lattice and contribute to improve the pinning properties with applied currents
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6 | Vortex creep in tilted
lattices: temperature
induced vortex arrest

6.1 Vortex creep

In this chapter we analyse vortex creep in tilted magnetic fields. We explain a
rather peculiar phenomenon, which was found previously in the laboratory. My
contribution in this chapter is to identify vortex positions from consecutive images,
show how we can obtain their velocities and directions and discuss how this can be
related to a model that describes creep in vortex lattices in tilted magnetic fields.
One of the greatest challenges in type II superconductivity is the ability to increase

critical current. This requires to control the position of vortices by fixing them at
pinning centres. However, the characteristics of vortices and pinning centres are
very dependent on the structural and superconducting properties of each sample.
Still, there are some important common aspects.
When varying the applied magnetic field, its strength or direction, vortices either

enter or exit the sample. They are driven towards the interior or exterior by the
Lorentz force due to the Meissner shielding currents. In an ideal superconductor,
vortices arrange in a triangular lattice, distributing all over the sample. However,
in real superconductors, there are defects that act as pinning centres. As proposed
by Bean [35], vortices will create the so-called critical state (subsection 1.2.4). In
the Bean critical state the magnetic field distribution in a superconductor is not
homogeneous. When the field is increased, the surface barrier (Bean Livingston
barrier) and the pinning hamper the motion of vortices towards the interior of the
sample, and therefore the interior stays field free. This occurs until the field reaches a
large enough value, and intervortex forces overcome pinning barriers making the field
homogeneous. The opposite happens when the external field is decreased. Vortices
at the edges first exit the sample and thus the magnetic field is larger at the center
than at the border of the sample. This is a metastable state and a very small change
is enough to depin vortices and move them to the interior of the sample where vortex
density is smaller. Vortices that are pinned receive a drive that helps them to leave
the pinning center. Vortices are caught in a potential well, defined by the pinning
center, and the drive is given, within Bean’s picture, by a change in the magnetic
field. The jump over the potential well is mostly a thermally activated phenomenon.
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When vortices jump from one pinning site to the other, they accelerate continuously,
since there is no pinning force counteracting that motion. However, there is a drag
force which counteracts vortex motion creating dissipation and heat [130]. The jump
of vortices from one pinning center to the other, crossing a path where their motion
dissipates heat, is what we call creep. For this reason it is important for applications
to immobilize vortices and eliminate creep.
Usually, pinning barriers are very different in a macroscopic sample and nearly at

all temperatures, the thermal energy is sufficient to create creep. [143]. In STM,
vortex creep has been observed in Ref. [28, 144, 145]. This phenomenon also has
been seen in several systems of interacting particles, such as colloids, polymers,
solid consisting of mixtures or in lattices of entities formed by electronic interactions
(domain walls or skyrmions)[146, 147, 148, 149, 150]. A useful parameter to
evaluate the importance of thermal fluctuations is the Ginzburg-Levanyuk number,
Gi (subsection 1.2.2).
2H-NbSe2 is a dichalcogenide compound whose crystal structure is formed by

blocks of Nb-Se-Nb. Nb and Se are arranged forming a triangular lattice. The
interaction between Nb or Se atoms within each layer is covalent while blocks of
Nb-Se-Nb layers are joined between them through Van der Waals forces. 2H-NbSe2
is thus very easy to mechanically exfoliate by removing the Nb-Se-Nb blocks. This
allows to find atomically flat and large areas made of Se atoms, ideal for scanning
tunnelling measurements.
Critical temperature is relatively high with Tc = 7.2K, and superconductivity

coexists with a charge density wave (TCDW = 33.5 K) at low temperatures.
Furthermore, 2H-NbSe2 has a strong anisotropy of ε ≈ 1/3. As the anisotropy is
presented between out-of-plane and in-plane directions, we say that 2H-NbSe2 is an
uniaxial superconductor. Vortex lattices under perpendicular magnetic fields have
been widely studied using STM. Vortices arrange in a triangular lattice, but each
vortex has a 6-fold star shape.
The behaviour of the vortex lattice in 2H-NbSe2 at tilted magnetic fields has

been discussed before [151, 152, 153, 154, 155, 53, 156]. The vortex lattice of
anisotropic superconductors is considerably modified at magnetic fields tilted from
the anisotropy axis. An in-plane vs out-of-plane anisotropy is defined as ε = Hc2,ab

Hc2,c
.

As I mentioned above, in 2H-NbSe2, ε ≈ 1/3 and one finds lattices that are no longer
hexagonal in tilted magnetic fields. Instead, the lattice in the plane perpendicular
to the field presents an elliptical distortion.
Furthermore, the vortices are not exactly aligned with the applied magnetic field

H. We say that the B-field created by vortices is not exactly equal to the applied
H-field. The angular difference is written as [130]

sin(θB − θH) =
Hc1

H

(1 − ε2) sin θBcosθB
√
ε2 sin2 θB + cos2 θB

(6.1)

where θB and θH are the angles of B and H with respect to the crystalline c-axis.
The temperature dependence of the equilibrium angle θB is encoded in Hc1(T). If we
expand Equation 6.1 in a small change of Hc1(T) = Hc1(T0)+δHc1 the angle changes
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to θB(T )=θB(T0) - δθB.

θB = −
δHc1

Hc1
sin θB cos θB

⎡
⎢
⎢
⎢
⎢
⎣

ε2sin4θB − cos4 θB
ε2 sin2 θB + cos2 θB

+
H

Hc1

cos(θB − θH)
√
ε2 sin2 θB + cos2 θB

1 − ε2
⎤
⎥
⎥
⎥
⎥
⎦

−1

(6.2)
We can simplify the expression by three approximations. i) H>> Hc1; ii) θB is far

from 0 or π/2 and iii) θB-θH << 1. Thus

δθB ≈
δHc1

Hc1
(θB − θH) (6.3)

We can calculate the deviation for the case of 2H-NbSe2. With an angle of the
magnetic field of θH = 70°, we obtain using Equation 6.1 a mismatch of θH - θB ≃ 0.8°
at base temperature (0.15K). At higher temperatures (2 K) we calculate a deviation
with Equation 6.3 of θH - θB(T) ≃ 0.5°. Therefore, at lower temperatures the
mismatch between the applied magnetic field is larger than at higher temperatures.
In Fig. 6.1 we show an sketch indicating the angle of the applied magnetic field

θH in black, θB(T) in red using Equation 6.3 and in blue θB(T0) using Equation 6.1.

c axis

a-b plane

θH

θC

B θB(T)

θB(T0)

d

w

Uniaxial 
superconductor

Figure 6.1: Schematic vortex alignment for an anisotropic superconductor in tilted
magnetic field. In black the angle of the applied magnetic field H, in yellow, the
critical angle, calculated with Bean model and in red and blue, the equilibrium
angles at temperatures, T0= 0.15 K and T=2 K respectively. Figure from [157].

If we instead consider weak pinning, a critical state occurs (as explained in
subsection 1.2.4 for perpendicular high magnetic fields). Critical state changes the
ideal tilted angle between the applied magnetic field and vortices to the so called
critical angle, θcB, written as:

θcB = θB − sinθB
4πjc
cB

w

2 = θB −
w

2lb
sinθB (6.4)

For 2H-NbSe2 we can calculate a θcB - θH ≃ 0.3°. Therefore, vortices are tilted out of
the equilibrium position θB. In Fig. 6.1 we observe that at 2 K vortex line direction
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is closer to the equilibrium angle θB than at lower temperatures.

6.2 Results

The images shown here were taken by J.A Galvis. The set of images are measured
with a scanning tunnelling microscope at a base temperature of T=150 mK. Sample
was cleaved in situ and a gold tip used was sharpened also in situ. First, a parallel to
c-axis magnetic field was applied of H = 0.85 T (θH=0°). At this stage there was no
observation of vortex movement within days. Then the magnetic field was rotated
up to θH=70°. Several consecutive images of 23 minutes each were taken at different
constant temperatures. First in a warming ramp with intermediate temperatures of
T=[0.2, 0.6, 1, 1.6, 2] K, and then cooled again at temperatures of T=[1.8, 1, 0.6]
K.

a b

Figure 6.2: (a) and (b) represent two consecutive frames. In order to identify
the motion of vortices, we plot in (b), the coordinates of the vortices in (a), using
red circles. Red arrows mark the displacements of each vortex between consecutive
images.

In order to analyse the images, it is important to detect vortices and follow them
in consecutive images. To this end, I have developed a methodology described in
the following. First, we detect the vortex centres with the method explained in
subsection 2.4.1. Second, we plot the following images, comparing the positions
of vortices in each consecutive set of two images. Third, we identify the general
trend of vortex movement and click and drag the position of each vortex in the
previous image, to the corresponding one in the present image. If a vortex appears
or disappears, we create a new point or erase it. The process is iterated until the
last image. At the end we have a matrix of size Nv × NI , being NI , the number of
images in the film and Nv the total number of vortices in all images. Following this
procedure, we obtain the trajectories of all vortices. We follow the trajectories of
vortices appearing in the images, including these from those vortices that only appear
in part of the sequence. This helps us to increase the statistics in the calculation.
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In Fig. 6.3, we show the first image at each temperature with the trajectories
followed by each vortex in the whole sequence of images. At low temperatures,
vortices move along the direction of the magnetic field within the layers. During the
time of measurements at constant temperatures, (∽ 5 h) no decay on vortex velocity
is observed. However, at higher temperatures vortices also move, but without a
privileged direction.

a b c d

efgh

0.2 K 0.6 K 1 K 1.6 K

2 K1.8 K1 K0.6 K

75

55

1.1

0

Figure 6.3: Vortex positions extracted for each image at constant temperature.
The image represents the first frame of the set of images. At first, at T=0.2 K
(a) there is a significant creep motion, it starts to disappear with temperature at
T=0.6 K (b) and T = 1 K (c) until motion stops at a higher temperature at T=
1.6 K (d), T=2 K (e) and T=1.8 K (f). When temperature is decreased again at
lower temperatures T=1 K (g) and T=0.6 K (h) creep starts again. White scalebar
represents 60 nm.

Another important thing to note is that vortex motion shows a weak modulation
at distances which correspond to multiples of the intervortex distance. In Fig. 6.4
we show a plot with the accumulated distance for 6 different vortices along the
whole film. This self-matching has already been observed before in 2H-NbSe2 and
in disordered films [158, 159] and evidences that the lattice moves as a whole in the
creep regime.
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~a0

Figure 6.4: Average accumulated length vs time for 6 vortices represented in
the inset at T=0.2 K. There is a weak modulation at distances multiples to the
intervortex distance indicated by dashed lines.

In order to be more quantitative with the observations in Fig. 6.3, we considered
it appropriate to define some quantities. The creep velocity of the vortex, v(T ),
using the position rj of vortex j in frame i, and the average displacement δrj, for
each vortex per frame defined as:

δrj =
∣rnjj − r1

j ∣

nj − 1 (6.5)

where nj denotes the number of frames where the jth vortex appears. Averaging
over all Nv vortices for a given temperature, we arrive at the average creep velocity

v(T ) =
1

tfNv

Nv

∑
j=1
δrj (6.6)

Being tf the time taken per image, tf=23 min. We also want to define the vortex
motion at higher temperature due to fluctuations around a fixed position as the
jitter velocity, δsj, with

δsj = (
1

nj − 1

nj

∑
i=2

∣δrij ∣) − δrj (6.7)

with ∣δrij ∣ the vortex displacement between two subsequent frames i-1 and i. The
average of all frames at a fixed temperature provides the jitter motion, ∆x(T ), is
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given by

∆x(T ) =
1
Nv

Nv

∑
j=1
δsj (6.8)

Inset of Fig. 6.5b, shows an sketch of the quantities δrj, ∑nji=2 ∣δrij ∣and δsj .
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Figure 6.5: (a), Average velocity of vortices in 2H-NbSe2 at titled field and fixed
temperature, in a cycle starting in the black arrow. (b), Jitter motion during the
same cycle of a. The inset of b, is a representation of δrj, ∑nji=2 ∣δrij ∣and δsj.

In Fig. 6.5a we show the average creep velocity. The arrow indicates the beginning
of the cycle. Creep velocity decreases upon warming and vanishes above 2 K.
However, when system is cooled again, it reappears. Jitter velocity does the opposite,
at low temperatures it is very low, and when heating, it increases (Fig. 6.5b). If
vortices were to reach a temperature independent minimum, when the system is
heated and cooled again, the creep motion would not reappear.

6.3 Discussion

6.3.1 Model for creep in presence of temperature

In the following we present a model developed by Roland Willa to describe vortex
creep in tilted magnetic fields [157]. The main idea of the model as shown in the
sketch of Fig. 6.6. Here, x is a parameter, as for example the angle formed between
vortices and the applied magnetic field. As we discussed in section 6.1, vortices are
in a critical state at an angle, θcB (points out of the equilibrium in Fig. 6.6), different
from the equilibrium angle θB (points at the minima Fig. 6.6). The energy landscape
for the vortex with minimum at θB is modelled as a one dimensional parabolic
trap. As θB depends on temperature (see Equation 6.1), low (blue) and high (red)
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temperatures parabolas are different. In order to move towards the equilibrium
position vortices must overcome the pinning barriers.

Figure 6.6: Schematic response of a particle in a confined potential and subject to
random disorder. The disorder potential is characterized by local maxima of size U0
and over a length scale ξ which is the superconducting coherence length in the case
of vortices in superconductors. Upon warming, the particle moves rather quickly to
a newly defined minimum as the disorder is thermally smeared out (indicated by
effectively smaller wells, red). When cooling, the potential landscape Ub changes and
the particle increases its energy relative to the new minimum in Ub. As the motion
is impeded by pinning barriers (blue), the particle creeps by thermal relaxation
towards the new minimum. Image from [157].

This model assumed that motion is driven by thermal fluctuations, through
an Arrhenius-type activation process across the pinning barriers. In such a case,
the timescale t ∼ τ exp(U0/kBT ) for thermal activation is determined by (i) the
temperature T , (ii) the energy barrier U0, and (iii) a microscopic time scale τ = ω−1

(ω is an attempt frequency to overcome the barrier).
In order to compare between experiment and theory, creep velocity and jitter

motion have been calculated as:

v ≈
2ξ
t
{1 − exp [ −

4U0

kBT
(1 −

√
kBT ln(ωt)

U0
)]}, (6.9)

∆x ∼ ξ
√
ωt exp [ −

2U0

kBT
(1 −

√
kBT ln(ωt)

U0
)]. (6.10)

Note that x is not the angle but the displacement of the vortices in the surface.
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Figure 6.7: (a), Average creep velocity v (in units of 2ξ/t) as a function of
temperature, see Eq. (6.9), for different timescales ωt. When temperature affects
both the activation dynamics and the global potential minimum, see Fig. 6.6,
the velocity profile is traced reversibly upon warming and cooling. (b), Standard
deviation ∆x of the mean particle displacement, quantifying the isotropic thermal
motion, or jitter, see Eq. (6.10). (c), Schematic of decreasing creep velocity (black
arrow) and increasing jitter motion (green cloud) upon warming. From [157]

Equation 6.9 and Equation 6.10 are equivalent to creep (Equation 6.6) and jitter
(Equation 6.8) respectively. We can observe in Fig. 6.7(a,b) the curves of the creep
velocity (Equation 6.9) and jitter (Equation 6.10) for different timescales, wt. While
creep velocity decreases with temperature, jitter motion is enhanced. In Fig. 6.7c an
sketch of the predicted behaviour is shown. At low temperatures, vortices have less
energy to overcome all the pinning barriers and therefore, they move slowly enough
to be able to observe it in our timescale. However, at higher temperatures, vortices
have more energy to overcome pinning barriers and they reach equilibrium position
faster. Still, as they have a thermal energy they jump randomly along local minima
potential increasing the jitter motion.

6.3.2 Comparison with our results

We can now compare our observations in 2H-NbSe2 with the model. The typical
barrier to overcome during pinning by thermal fluctuations is given by Arrhenius’
law U0 = kBT ln(ωt). To observe both the equilibrium phase at high temperature
and reentrant creep at low temperature, it is important that the temperature
of the experiment is of order of (U0/kB)/ ln(ωt). In contrast to the pinning
energy of one defect site, here U0 denotes the energy barrier for vortex creep
[160, 161]. The theory of weak collective pinning [162, 163, 130] provides the
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estimate U0 ∼ kBTc[(jc/jdp)/Gi]1/2(B/Hc1)3/2ν, with jdp = cΦ0/12
√

3π2λ2ξ the
depairing current, Gi ∼ [Tc/Hc(0)2ξ3]2 the Ginzburg-Levanyuk number [164, 165],
Hc(0)2ξ3 = Φ2

0ξ/8π2λ2 the superconducting condensation energy and ν ∼ 10−3. For
2H-NbSe2 we find jc/jdp ∼ 10−6 and Gi ∼ 8×10−7, from Refs. [166, 167, 168, 169, 170]
and obtain U0 ∼ 5kBTc, which is compatible with U0 ≲ kBTc ln(ωt), provided
ωt ≈ 103 − 104. This is somewhat larger than the values considered above Fig. 6.7).
Given the simplicity of the one-dimensional model, the agreement is still remarkable.
All important features predicted by the model (Fig. 6.7)—the disappearance and
reappearance of the directed motion, together with the temperature-evolution of
the jitter motion [behaviours of v(T ) and ∆x(T ), shown in Fig. 6.5(a,b) and in
Fig. 6.7(a,b)]—are found in the experiment.
Given that the experimental time scale spans several minutes, our observation

ωt ∼ 104 suggest a value for ω of order of one Hz. While a route for accurate
determination of this attempt frequency is still lacking, the estimate ω = αL/η for a
single vortex depends on the vortex viscosity η and on the Labusch parameter [171]
αL (which in turn relates to the averaged potential curvature[172]). While values in
the range 106-1010 Hz have been reported [173], the analysis assumes vibrations with
large k-vectors. In our case, vortices are not isolated, but rather interact non-locally
with many vortices [174, 130, 175, 176, 177, 178]. Low k-vectors, or wave-lengths
comparable to the sample size, leads to highly dispersive elastic moduli which modify
the attempt frequency by orders of magnitude [179, 176, 180]. Similar to our
observation, previous measurements of slow vortex dynamics have reported very
low frequency values for thermal motion and creep [177, 181]. Creep rates observed
in layered cuprate superconductors involve extremely large time scales, indicating
the relevance of collective creep [180, 130, 175, 179]. Thus, even if the attempt rate
of individual vortices is large, the dynamics as a lattice involves rates that are many
orders of magnitude smaller. The temperature is far from melting, thus favoring
collective rather than a single-vortex dynamics [182, 183]. This near-equilibrium
configuration with ultra-small collective dynamics is what allow for the observed
cooling imposed creep in our experiments.
The creep discussed here is very slow and no decay in the vortex velocity is

observed within our experimental time. However, the creep rate S = d ln(j)/d ln(t)
can assume a seizeable value compatible with the suggested lower bound[184]
S > (T /Tc)Gi1/2. Actually, 2H-NbSe2 is among the materials with lowest creep
rates, close to MgB2[184]. Creep between metastable vortex states that occur
near the order-disorder transition of the vortex lattice in 2H-NbSe2 or related
to domain formation of lattices with different orientations in MgB2 has been
reported[185, 186, 187]. Motion then appears when modifying the relative strength
of competing interactions, and it might well occur that the equilibrium configuration
at some particular locations is influenced by temperature. Collective motion is also
found in stochastic behaviour of particle arrangements [146]. Depending on particle
interactions, the dynamics transits from individual random motion to flocking. The
time scale related to flocking motion shows a divergent behaviour with increasing
interaction. Other long term dynamical behaviour should appear in thermal effects
and might lead to creep on cooling whenever there are two or more parameters
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influencing the behaviour of the system. Mixtures, such as alloys, concrete or
rocks [188], liquids re-solidifying under stress [147], steel under stress [148], colloidal
systems, magnetic domain walls or skyrmions [150] might all be cases of complex
systems where creep combines with the temperature variations of the interaction
and provide new temperature dependent effects, such as creep onset on cooling.
The model of self-imposed creep explains the critical state dynamics in 2H-NbSe2

at tilted magnetic fields; in particular the commonly unexpected appearance of
vortex motion when cooling. Likely, the balanced thermal activation dynamics and
the temperature-dependent equilibrium could be matched in many other uniaxial
superconductors with weak pinning and in complex systems.

6.3.3 Comparison with other systems showing creep

One of the first creep visualizations was realised by Kes in irradiated samples of
2H-NbSe2 irradiated with columnar defects (CD) [158]. Vortex plastic flow begins
when the number of vortices is twice the number of defects. Some vortices remain
pinned but others flow along the high symmetry direction of the vortex lattice. This
was the first observation of matching of vortex motion with a washboard potential
made by the whole lattice and pinning.
Another interesting experiment was performed by Nishida in YNi2B2C [189]. This

creep was not observed in equilibrium conditions but during a constant magnetic
field ramp of 0.2T/h in high magnetic fields. Vortices flows in the same directions
as glide dislocation in the vortex lattice.
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Figure 6.8: Results of low temperature creep in Rh9In4S4 [190]. (a), average image
of all the images taken at 0.4 T. (b) Trajectories of vortices (points) in consecutive
images of H=0.4 T. (c), Histogram of the velocities found for the images set at H=
0.4 T, 0.6 T and 0.8 T. We represent counts for a given velocity (x axis) measured
with respect to the average velocity. The counts (y axis) are normalised to one at
the center. To calculate the velocity, we use the distance travelled between two
subsequent images. The histograms are shown by the dashed lines and points, and
the lines are Gaussian fits, giving approximately a half width of 23, 16, and 20 nm/h
for 0.4, 0.6, and 0.8 T, respectively.

We also observed low temperatures creep in the system of Rh9In4S4 [190]. For
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this work we also analysed the vortex creep images taken by E. Herrera. This
compound is characterised by a large Ginzburg-Landau parameter of κ ≈ 61. STM
images were taken at 150 mK at magnetic fields of 0.4 T, 0.6 T and 0.8 T. We
observed creep a motion at common direction but also jitter-like movement. This
jitter motion was comparable at all magnetic fields. In this compound, the Ginzburg
Levanyuk parameter, Gi, is very large, of order of 10−5. Therefore, the thermal
contributions are still important even at low temperatures and vortex creep is
thermally activated to reach an equilibrium position. The key difference with the
observations in 2H-NbSe2 is that in Rh9In4S4 is an isotropic superconductor and
therefore, the equilibrium position does not change with temperature. This means
that if temperature is raised, vortex lattice will move faster to the equilibrium
position, and when the temperature is cooled again, vortex lattice will be steady.

6.3.4 Conclusions

In summary, we have analysed vortex lattice images in tilted magnetic fields in
2H-NbSe2. We find that vortices start creeping when cooling and provide a careful
calculation of the velocities and vortex positions. This calculation has allowed us to
compare to a theoretical model that brings understanding into the observation. The
equilibrium position to which the vortex lattice creeps changes with temperature.
This phenomenon might as well appear in other complex systems showing creep.
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Summary
Since 1911 when Kamerling Onnes discovered superconductivity, a huge interest

on this phenomenon arose due to its potential ability to change the way we distribute
and store energy. However, the presence of superconductors in our daily lives
is probably much smaller than expected 100 years ago. One important reason
for this, is that the motion of vortices under the presence of a current produces
non-zero resistance. Hence, vortices need to be pinned in any practical application of
superconductors. Nevertheless, new and exciting discoveries in the past years, such
as the iron-based superconductors or innovative methods to make superconductors
operational at higher temperatures and fields, show that we are in front of a
significant improvement of their properties for applications.
Throughout this thesis, we have measured and analysed vortex lattices using local

probe microscopies in various superconducting materials under different external
conditions. One of the main advantages of locally observing vortex lattices is that we
have simultaneous information on vortex positions and disorder producing pinning
in the sample, and that we we can make statistical studies of the lattice and relate
these to the behaviour of individual vortices.
A disordered hyperuniform lattice is one of the vortex arrangements that have

been proposed in order to increase critical current. Hyperuniformity means
no long-distance density fluctuations. As this concept includes crystals and
polycrystals, we have looked specifically for strongly disordered vortex lattices. We
have analysed a number of vortex lattice images with different disorder levels, and
find that a vortex lattice might show hyperuniform behaviour if the lattice is stiff
enough and individual vortex pinning strong enough to distort the lattice at short
length scales and leave a homogeneous distribution at large scales.
We have also analysed squid-on-tip measurements of the vortex lattice at low fields

(<100 G), in the superconductor β-Bi2Pd. The presence of linear defects produces a
very inhomogeneous vortex arrangement, where the standard deviation of distances
between first neighbours diverges as the magnetic field decreases. Furthermore, we
have found that these arrangements are multifractal. We have compared our results
with other vortex phases reported at low magnetic fields. We have found that the
multifractal properties and diverging standard deviation with decreasing field are
rather unique properties of this phase, that we called vortex gel using the analogy
with the characteristics of gels and foams. As we have discussed, this system can be
considered to be anti-hyperuniform.
Additionally, we studied the effect of a tilted magnetic field over the vortex lattice

in the uniaxial superconductor 2H-NbSe2. Creep is created by jumps of vortices
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over small potential barriers and is on the very origin of the onset of dissipation in a
superconductor. Usually, creep requires thermal energy and appears when heating.
But experiments show here the opposite. By carefully following the change in the
positions of the vortices as a function of time and temperature, and determining
the creep speed and fluctuations with respect to their equilibrium position due to
thermal jitter, we have found the origin of this peculiar effect. The anisotropic
properties of 2H-NbSe2 make that the equilibrium position of the vortex lattice is
changed when cooling. This explains the appearance of creep upon cooling. In this
work, we have collaborated with R. Willa from Karlsruhe to develop a theoretical
model that explains the experimental data.
Another system that has been studied and analysed is the Ni-doped

CaK(Fe0.95Ni0.05)4As4 pnictide. In this material a non-collinear antiferromagnetic
order, known as hedgehog, coexists with superconductivity at low temperatures.
We have observed that the vortex lattice in the Ni-doped compound is more
disordered than in the stoichiometric compound. Our quasiparticle interference
(qpi) measurements show that the Fermi surface is reconstructed giving compelling
evidence for the microscopic coexistence of superconductivity and hedgehog AFM
order. We find that this coexistence produces a very anisotropic superconducting gap
with a four-fold in-plane symmetry. These results are reproduced by band-structure
calculations performed by the group of R. Valenti in Frankfurt. Finally, we have
reported

√
2×

√
2 charge modulation induced by atomic displacement under magnetic

field in the hedgehog AFM crystalline structure.
In this thesis, I performed the first measurements of the superconducting

properties and the vortex lattice of a system where superconductivity coexists with
non-collinear magnetic order. I found a significant influence of the magnetic order
in superconductivity. I also built a STM and developed methods to analyse vortex
images. Using those methods, I pointed out the presence of a new vortex phase
in β-Bi2Pd, discussed the possibility to have hyperuniform vortex lattices in the
mentioned CaKFe4As4 and in other systems, and analysed vortex creep.
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Conclusiones generales
Desde 1911, cuando Kamerling Onnes descubrió la superconductividad, el interés

en este fenómeno despertó un enorme interés debido a su potencial para cambiar
la forma en que distribuimos y almacenamos la energía. Sin embargo, el impacto
de la superconductividad en la actualidad, es probablemente mucho menor de lo
que se esperaba hace 100 años. Uno de los principales motivos, es el hecho de
que el movimiento de vórtices en presencia de una corriente eléctrica, produzca
una resistencia. Por tanto, para lograr cualquier aplicación práctica de los
superconductores, es necesario que los vórtices estén anclados. No obstante, en
los últimos años se han realizado nuevos e interesantes descubrimientos, como los
superconductores basados en hierro y métodos innovadores para conseguir que los
superconductores sean eficientes a mayores temperaturas y campos, demostrando
que estamos ante una mejora significativa de sus propiedades de cara a las
aplicaciones.
A lo largo de esta tesis, hemos medido y analizado redes de vórtices usando

microscopia con resolución espacial en varios materiales superconductores y bajo
diferentes condiciones externas. Una de las principales ventajas de la observación
local de redes de vórtices, es que simultáneamente tenemos información sobre las
posiciones de los vórtices y el desorden que produce anclajes en la muestra. También,
podemos realizar estudios estadísticos a la vez que mantenemos la información de
vórtices individuales.
Una de las distribuciones propuestas para aumentar la corriente crítica es una

red hiperuniforme desordenada. La hiperuniformidad describe un sistema en el que
no existen fluctuaciones de densidad de larga distancia. Dado que este concepto
podría incluir cristales y policristales, se ha buscado específicamente un sistema
desordenado. Hemos analizado muchas imágenes de redes de vórtices con diferentes
niveles de desorden, y hemos visto que es casi imposible desordenar una red de
vórtices de manera hiperuniforme. A pesar de esto, encontramos que la red de
vórtices en LiFeAs se acerca bastante a esta definición.
También hemos analizado medidas squid-on-tip en redes de vórtices a bajos

campos (<100 G), en el superconductor β-Bi2Pd. La presencia de defectos lineales
produce una distribución de vórtices muy inhomogénea, donde la desviación estándar
de las distancias entre primeros vecinos diverge a medida que el campo magnético
disminuye. Además, hemos observado que estas distribuciones son multifractales.
Hemos comparado nuestros resultados con la fase de vórtices de otros materiales a
campos magnéticos bajos. Encontramos que tanto las propiedades multifractales,
como la divergencia de la desviación estándar al disminuir el campo magnético, son
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propiedades únicas de esta fase, a la que hemos denominado gel de vórtices, usando
la analogía con las características de los geles y las espumas. Tal y como hemos
discutido, este sistema puede considerarse anti-hiperuniforme.
Además, hemos estudiado el efecto del campo magnético inclinado sobre la red de

vórtices en el superconductor uniaxial 2H-NbSe2. Hemos observado, de manera
inesperada, que el movimiento de arrastre de los vórtices comienza cuando la
muestra se enfría. Dicho movimiento comienza cuando los vórtices sobrepasan
pequeñas barreras de potencial y es el origen de la disipación del superconductor.
Habitualmente, el creep requiere energía térmica y aparece cuando se calienta el
material. Sin embargo, hemos observado lo contrario. Estudiando cuidadosamente
los cambios en las posiciones de los vórtices en función del tiempo y de la
temperatura, y, determinando la velocidad del movimiento de arrastre y sus
fluctuaciones con respecto a la posición de equilibrio dada la agitación térmica,
hemos localizado el origen de este peculiar efecto. Las propiedades anisótropas
del 2H-NbSe2 causan que el punto de equilibrio de la posición del vórtice varíe
al enfriarse. Esto explica la aparición del movimiento de arrastre al bajar la
temperatura. En este trabajo, hemos colaborado con R. Willa de Karlsruhe para
desarrollar un modelo teórico que explique los datos experimentales.
También se ha estudiado y analizado el pnicturo CaK(Fe0.95Ni0.05)4As4 dopado

con Ni. En este material, coexiste un orden antiferromagnético no colineal, conocido
como hedgehog o erizo, junto con la superconductividad a bajas temperaturas. Se ha
observado que la red de vórtices del compuesto dopado con Ni está más desordenada
que la del compuesto estequiométrico. Nuestras medidas de interferencias de
cuasipartículas (qpi), concuerdan con una superficie de Fermi reconstruida, teniendo
así indicios de la coexistencia microscópica entre la superconductividad y el
orden AFM de hedgehog. Esta coexistencia, produce un gap superconductor
muy anisotrópico con una simetría de orden cuatro. Estos resultados han sido
reproducidos por cálculos de estructura de bandas realizados por el grupo de
R. Valenti en Frankfurt. Finalmente, hemos mostrado una modulación de carga√

2×
√

2, inducida por los desplazamientos atómicos en la estructura cristalina bajo
campo magnético asociados al AFM de hedgehog. En esta tesis he realizado las
primeras medidas de las propiedades superconductoras y la red de vórtices en un
sistema que coexiste con un orden magnético no colineal. También construí un
STM y he desarrollado métodos para analizar imágenes de vórtices. Con ellos,
hemos comprobado la nueva fase de vórtices en el β-Bi2Pd, discutido la posibilidad
de tener redes de vórtices hiperuniformes tanto en el material CaKFe4As4 como en
otros sistemas y finalmente analizar el creep de vortices.
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