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Abstract

A lot of effort has been put in the last years to study and understand the
band structure of materials, especially near the Fermi level. Many recent
discoveries in condensed matter physics rely on the connection of electronic
structures and topology. Some materials present novel properties and topo-
logically protected surface states that can be studied using techniques such
as scanning tunneling microscopy (STM). STM can study both the bulk and
surface states as a function of temperature or magnetic field. Its high spatial
and energy resolution makes it an ideal technique for studying these materials.
In this thesis, I addressed materials with topological properties in the band
structure using STM. T studied magnetic and non-magnetic Weyl semimetals
and a superconductor, all having few states at the Fermi level. From my mea-
surements, I obtained new insight due to the peculiar properties of the band
structure and the number of states close to the Fermi level in each system.

I first studied the band structure of the Weyl semimetal WTes. Using the
Landau quantization of the bands when applying a magnetic field, we can
obtain information about the bulk band structure and surface states. I studied
the atomic scale Landau quantization in this material, finding evidence of two
surface states related to the Weyl points in the bulk band structure, and an
associated modification of the sequence of the Landau levels.

Then, I addressed the influence of the magnetic field in the magnetic Weyl
semimetal CozSnsSo. This is a ferromagnetic material where the bands close
to the Fermi level are spin polarized, including a flat band that forms due to
the arrangement of Co atoms on a kagome lattice. I have focused on studying
the influence of the kagome lattice on atomic chains at the surface. I observe
end states, an accumulation of electronic density at the ends of the atomic
chains.

I studied the antiferromagnetic topological material EuCdoAsy. The defects
in this material appear significantly extended when studied with the STM,
which reflects a significant reduction of screening at the surface. We have
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observed the formation of localized states at the defect due to both spatial
confinement and the magnetic field.

Finally, T have studied the iron-based superconductor FeSe. We studied the
bulk band structure and found a localized state above the Fermi level in the
defects. This state reflects a change in the band structure at these points.
We found a ring-like feature between the defects due to the presence of the
localized state and the influence of the tip in it. This is consequence of an
absence of screening due to the orbital selective correlations in this material.



Resumen

En los tltimos anos se han dedicado grandes esfuerzos a estudiar y com-
prender la estructura de bandas de los materiales, especialmente cerca del
nivel de Fermi. Muchos descubrimientos recientes en fisica de la materia con-
densada se basan, precisamente, en la conexion entre la estructura electronica
y la topologia. Algunos materiales presentan propiedades novedosas y estados
superficiales topologicamente protegidos que pueden estudiarse mediante téc-
nicas como la microscopia de efecto en tinel (STM por sus siglas en inglés).
Mediante STM, se pueden estudiar tanto los estados de volumen como los
de superficie bajo distintas condiciones, como son la temperatura o el campo
magnético. Su alta resolucion espacial y en energia convierten a esta técnica
en una candidata ideal para estudiar estos materiales.

En la presente tesis, primero he estudiado la estructura de bandas del se-
mimetal de Weyl W'Tey. Utilizando la cuantizacion de Landau de las bandas
bajo la influencia de un campo magnético, podemos obtener informacion sobre
la estructura de bandas del volumen y de los estados superficiales. Ademas,
he estudiado la cuantizaciéon de Landau a escala atémica en este material, en-
contrando evidencias de dos estados superficiales relacionados con los puntos
de Weyl en la estructura de bandas en el volumen, y una modificacién de la
secuencia de los niveles de Landau.

A continuacién, he abordado la influencia del campo magnético en el semi-
metal de Weyl magnético CozSnaSy. CozSnaSo es un material ferromagnético
en el que las bandas cerca del nivel de Fermi estan polarizadas en espin, in-
cluyendo una banda plana formada por la disposicion de los &tomos de Co en
forma de una red kagome. Me he centrado en el estudio de la influencia de la
red kagome en las cadenas atémicas de la superficie, donde se observan estados
de borde. Estos estados estan relacionados con una acumulacion de densidad
electronica en los extremos de las cadenas atémicas, debido a una diferencia
considerable en las energias de los d&tomos de los bordes con respecto a los
atomos en el interior de las cadenas. Esta diferencia se debe a la localizacién
electronica dentro de los hexagonos en la red kagome.
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También he estudiado el material topologico antiferromagnético EuCdgAss.
Los defectos en este material aparecen significativamente extendidos cuando
se estudian mediante STM, lo que refleja una reduccién significativa del apan-
tallamiento en la superficie. Hemos medido la cuantizacién de los estados en
los defectos. Cuando se aplica el campo magnético, la cuantizacion Landau
aumenta el nimero de niveles.

Por 1ltimo, he estudiado el superconductor de hierro FeSe. He estudiado la
estructura de bandas del material y hemos encontrado un estado localizado por
encima del nivel de Fermi en los defectos. Este estado refleja un cambio en la
estructura de bandas en dichos puntos. Hemos encontrado una senal en forma
de anillo entre los defectos debido a la presencia del estado localizado y a la
influencia de la punta. Esto es consecuencia de la ausencia de apantallamiento
debido a que las propiedades electronicas dependen fuertemente del caracter
orbital de las bandas.



—Chapter 1

Introduction

N this work T will present studies of the electronic band structure

made with Scanning Tunneling Microscope at high magnetic fields.

The electronic band structure is a concept of solid state physics

which is firmly established since more than a century. Experiments and calcu-

lations have agreed on the rough features of the band structure of many met-

als, semimetals and semiconductors for a long time. However, recent advances

in calculations and techniques used to study the band structure (essentially

angular resolved photoemission (ARPES), quantum oscillations and scanning
tunneling microscopy (STM)) have unveiled a flurry of new physics.

As so often, the increased resolution in experiments and calculations does
not just bring an increased accuracy allowing to resolve tiny structures. On
the contrary, it provides a qualitatively new landscape of electronic phenomena
in solids. In this PhD thesis, I have explored this new landscape, obtaining
results in an iron based layered material and in semimetals.

1.1 Band structure in solids

In the free electron model, the energy levels ¢ can be described as a con-

tinuum?!

h? 2 2 2
ek:%(kx+ky+kz), (1.1)

IThis section follows the explanations of the solid state physics books written by
Asheroft /Mermin [1], Ibach [2], Kittel [3] and Ziman [4]
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where the wave functions for free electrons are

(7) = e, (1.2)

and the Fermi surface is a sphere of radius kr. The free electron model is a
good approximation to understand basic aspects of some properties such as the
thermal and electrical conductivity, the magnetic susceptibility or the specific
heat.

1.1.1 Nearly free electrons and tight binding

The electronic band structure can be obtained from two different approx-
imations. We can start from free electrons and include a periodic potential
V(7) to obtain Bloch functions:

U(F) = Y g BT, (1.3)
K

The corresponding band structure is shown in figure 1.1 a in the repeated
zone scheme. As we can see, we have nearly the same result as with free
electrons, although Bragg scattering at the Brillouin zone boundary opens
gaps in the dispersion relation.

We can also start from atomic orbitals. We take atoms periodically ordered
and separated by a distance r and look at their overlap using the tight-binding
approximation. For large r, the wave function overlap is small and therefore
bands are narrow. When reducing r, atomic wavefunctions overlap significantly
and produce large bands, as represented in figure 1.1 b.

In this model, we can start from the Hamiltonian of one single atom Hat(F —
T, ) at the lattice position 7y

Hoy (7 =7p)pi(F = 7)) = Ejon (7 = 1), (1.4)

where 1, (7) is the wave function for an electron in the atomic level E,. A
term AU(7) can be included if the crystal Hamiltonian differs from Hy,

h2
H=Hy+AU(F) = —%V2+Vat(%’)+v(?), (1.5)
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Fig. 1.1: (a) € vs k band structure representation. Free electron parabola
in one dimension is represented in purple. The parabola is distorted in
the vicinity of the Bragg planes +m/a due to a weak periodic potential
considered in the nearly free electron model, obtaining the orange curve.
(b) Schematic representation of electronic levels in an atomic potential.
These levels are degenerate in a set of N independent atoms located far
apart. When we reduce the spacing between atoms, discrete degenerate
levels broaden into bands.

where v(7) describes the perturbation to the potential Vg of the free atom.
Thus, this perturbation can be written as a sum over the potential for all atoms
apart from the atom at 7,

V(F=7) = Y V(7 = 7). (1.6)

m#*n

For the crystal Hamiltonian, the solution will be the solution to the Schrédinger
equation

Hy(7) = E(R)x(7), (1.7)

where 1 (7) are Bloch waves. Multiplying by ¢} and integrating in the range
where 1, is defined, we obtain

(Vrlr)
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where

(wilHlon) = [ v (1.9)
(unln) = [ viinar, (1.10)

As the crystal Hamiltonian is based on the free atom Hamiltonian, we can
write the crystal wave function ¢; as a linear combination of atomic eigen-
functions ¢y,

U ® B = Y appn (F =) = . €My (7 = 7)), (1.11)
n n

where ¢y are Bloch functions. Then, the coefficients are determined as a,, =
e Tnserting the solution ¢ in Eq. 1.10 and for sufficiently localized
electrons, we obtain

(Olon) = ngp;(F—Fn)gai(F—Fn)dF:N, (1.12)

where N is the number of atoms in the crystal. The energy of the crystal can
be obtained in terms of the energy for the free atom

1 o L o o
E(k)m—ZeZk'(r"_T’")[% (7 =7m) [Ei + v(F = 7)) ] i (F = 7p)dP, (1.13)
n,m

N
where FE; is the energy eigenvalue of the isolated atom. Two approximations
have been made. First, in the term containing Ej;, only the terms with n =m
have been considered. Furthermore, in the term containing the perturbation
v(F = 7,), the overlap only includes the first neighbor.

If the atomic level is not degenerate, we have an s-level and equation 1.13
reduces to a single equation. The result is an explicit expression for an s-band.
For bands arising from the p-level, which is three times degenerate, equation
1.13 gives three homogeneous equations. Thus, the number of equations in-
creases as the level of degeneration increases.

1.1.2 Semiconductors, semimetals and metals

Depending on the shape of the band structure around the Fermi level, we
can classify materials as metals, semimetals, and semiconductors or insulators
(see figure 1.2).
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Metal Semimetal Insulator

Fig. 1.2: Schematic representation of the difference between metals,
semimetals and insulators. Dashed horizontal line represents Fr in metal
and semimetal and the middle of the gap in the insulator or semiconduc-
tor

Of particular interest for this PhD thesis are semimetals, where the Fermi
level lies very close to the top and/or bottom of the bands. To discuss our
work we need to present briefly how to account for impurities in an electronic
system. An atomic size impurity consisting of a defect or an impurity atom,
may create charge around it. This charge is screened out in a metal but not
in a semiconductor or an insulator.

Impurities create electronic states within the gap in semiconductors or insu-
lators which can remain localized or create an additional band if the impurity
density is large enough.

1.1.3 Impurities in semiconductors

Impurities are known as donors if they contribute to the carrier density of
a semiconductor providing additional electrons to the conduction band. They
are known as acceptors if they supply additional holes to the valence band.

For a donor impurity contributing with one extra valence electron (for ex-
ample, if we dope a material with the neighbor at the right in the periodic
table and ignoring the difference in size and structure between atoms), we can
consider that we have the undoped material, but with electron doped centers.
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Fig. 1.3: Schematic representation of the energy levels of donors and
acceptors in a semiconductor. The donor level E,; appears close to the
conduction band (CB) and the acceptor level E,, close to the valence
band (VB), compared to the gap energy E,.

The additional electron leads to an additional energy level E; lying close to
the conduction band, Ecp, inside the gap of the semiconductor.

When the material is doped with acceptors, we can consider the undoped
material with an extra hole, and the result is an additional electronic level
E, near the top energy of the valence band Eyp. Figure 1.3 schematically
represents the conduction and valence bands separated with a gap and the
position of the donor and acceptor states in energy.

1.1.4 Lindhard function and screening

Screening is a relevant consequence of electron-electron interactions. Let us
assume that a positively charged particle is placed in a fixed position in an
electron gas. This particle attracts electrons, creating a charge in its neigh-
borhood that screens its field. To describe this screening, we can introduce
two potentials. ¢¢**, that arises from the charged particle itself and satisfies
Poisson’s equation

~V2¢%H(F) = dmpet(7), (1.14)
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where p®t(7) is the charge density of the particle, and ¢, which is the full
potential produced by the charge and the cloud of electrons surrounding it

—V26(7) = 4mp(7). (1.15)

p(7) = p(7) + p™(7), being p™?(7) the charge density induced in the
electron gas by the presence of the positive charge. Assuming that ¢ and ¢¢*t
are linearly related and considering the Fourier transform, we can write

- 1 .

0(7) = —=0“"(d). (1.16)
e(q)
where ¢ is a wave vector and ¢(¢) is known as the dielectric constant of the
material, which can be expressed as

N A (g
«(q)=1-— E )
¢ o(q)

(1.17)

In this description, the only approximation is that we considered that the
applied charge is weak enough to produce a linear response in the electron
gas. A more detailed description is the Lindhard approach, where we write
the dielectric constant as

R dme? — f(k) - f(k—q
6(q):]‘-i- 2 Z (_’) 4,( _')7
i oe(k—q) —e(k)
where f is the Fermi function and e the electronic energies. We sum over all

available states k, to find the dielectric constant at a vector ¢. If we consider
€(q) near ¢ = 0, we can approximate

e(k+q) —e(k) » G- vie(k), (1.19)

R R P R
FR) = F(F ) = - L9 (R). (1.20)

(1.18)

We see that the dielectric constant is mostly influenced by the Fermi level,
where Jf/O¢ is large. When converting the sum into an integral, we find the

relation )

A
e(q) > 1+ 2 with A\ = 47 N(er). (1.21)

This suggests that the inverse of A provides the distance above which the
potential due to the charge is modified. Often, in metals with a large N(Ep),
the charge is screened at small distances, whereas in semimetals with a small
electronic density, the potential due to an impurity extends to larger distances.
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1.1.5 Mott transition

Electronic interactions may also convert a metal into an insulator, or consid-
erably modify the band structure. One way of seeing that is through the Mott
transition. Mott considered an ordered array of monovalent atoms [5]. For
small interatomic distances d, this system is a metal. But for sufficiently large
d, Mott showed that such a system should be an insulator. The activation
energy to form a pair of carriers is given by the ionization energy minus the
energy required to add an electron (electron affinity in an insulator). The for-
mation of electronic bound states, such as bound electron-hole pairs, is possible
unless the other electrons screen the Coulomb attraction. When d decreases,
the activation energy decreases. The Coulomb potential is screened as shown
in Eq. 1.16. Taking d o< 1/q in Eq. 1.16, we can see that bound states no
longer exist when the distance d is such that the electron density is larger than
N1Bay ~ 0.2 where ag is Bohr radius.

Increasing U/W

v

Energy

m
Tl

» »

DOS DOS DOS

Fig. 1.4: Adapted from [6]. Schematic representation of a Mott tran-
sition. In the first case, the electrons are independent and the Ep is
located at the center of the band. When the ratio U/W increases, the
DOS present a three peaks structure. Finally, the metal-insulator tran-
sition occurs, and the peak in the middle disappears. The final DOS
consists of two bands.
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Within the Hubbard model, electrons with spins ¢ =1 or | can move between
localized states at lattice positions 7 and j [6], and they can only interact when
they are at the same position. Thus, the Hubbard Hamiltonian can be written
as

H = ZtijCIUCjU +U Znimii, (1.22)

ijo )

where the first term is the tight-binding Hamiltonian and the second term
describes the local Coulomb interaction U between two electrons in the same
lattice position 7. n;, = czacw is the density of electrons at site <. The resulting
density of states per energy can be pictured as a function of U/W, where U is
given by the interaction term in Eq. 1.22 and W is the bandwidth resulting
from the tight binding part of Eq. 1.22. The Mott transition occurs when the
interaction is large enough [6], as represented in figure 1.4.

1.2 Impurities and defects in semiconductors and
semimetals

1.2.1 Band bending in semiconductors

Schottky and Mott first developed the band bending concept to explain the
rectifying effect of metal-semiconductor contacts |[7-10|. When a metal and a
semiconductor are in contact, electrons flow across the interface to compensate
for the difference in the work functions. If the work function of the metal (¢,,)
is higher than the work function of the semiconductor (¢s), the electrons flow
from the semiconductor to the metal until the Fermi levels are aligned. Figure
1.5 a shows a metal and a semiconductor in contact, with ¢,, > ¢5. Figure
1.5 b shows the opposite case (¢, < ¢5). These figures describe schematically
the out of equilibrium situation, in which electron flow did not yet happen.

In equilibrium, the Fermi levels of both materials align. Due to the low
concentration of free carriers in the semiconductor, the electric field at the
metal-semiconductor interface is not screened. This electric field results in a
depletion of the carrier concentration at the surface of the semiconductor when
Om > ¢s. Carrier concentration becomes smaller at the surface than in the bulk.
In this process, a depletion layer is formed (see figure 1.5 ¢). In the case where
Om < ¢ the electrons accumulate in the surface of the semiconductor, forming
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Fig. 1.5: Adapted from [11]. Metal-semiconductor contact out of the
equilibrium with ¢,, > ¢5 (a) and ¢, < ¢s (d). The electrons transfer
between the materials until the Fermi levels are align, causing a charge
depletion (c¢) or accumulation (d), bending the bands in the process.

an accumulation layer (figure 1.5 d). In the energy space, the bands shift as
a function of the position due to the electric field between the semiconductor
and the metal. This effect is called band bending.

An external electric field can also induce a band bending at the surface of a
semiconductor which has a metal at such a small distance that electrons can
tunnel between the metal and the semiconductor. To see this, let us assume
for simplicity that the work functions of the metal and the semiconductor are
equal (figure 1.6 a). When a bias voltage is applied to the metal, an electric
field is set up between the metal and the semiconductor. This electric field
can penetrate a region near the surface of the semiconductor due to the small
screening by the low concentration of carriers. Depending of the direction
of the voltage applied, the band bends downwards (figure 1.6 b) or upwards
(figure 1.6 ¢). When taking into account that the work function is not the
same, the picture does not change qualitatively. There is just a shift in such a
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way that there is no band bending when the applied voltage compensates for
the work function difference.

(@)

(b) V>0 (c) V<0
Erm

Fig. 1.6: Adapted from [11|. Band bending process of a semiconductor
due to an external electric field, when ¢,, = ¢,.

A direct consequence is that a metallic electrode put in connection with a
semiconductor might produce a surface potential. In particular, any electrode
that is used to measure a tunneling current eventually acts invasively and mod-
ifies the band structure of the semiconductor by bending the conduction and
valence bands. This is important in Scanning Tunneling Microscopy (STM),
where one electrode has a tip geometry which is located at tunneling distances
on top of the semiconducting sample. The STM tip then can modify the band
structure locally during scanning.

1.2.2 Charging by a STM tip

Figure 1.7 shows two conductance maps taken with different voltages, where
a ring-like feature can be seen surrounding a defect. Note that the size of
the ring changes with the voltage applied. As we shall see now, the ring
like structure is a consequence of a localized state at an energy inside the
semiconducting gap. The energy of the localized states is modified by the
gating through the bias voltage applied to the tip [12-17].

The band bending described at the beginning of this section can also affect
the donor and acceptor states created by impurities. Let’s consider the case
of a donor impurity, indicated with the red line in figure 1.8. This figure
schematically represents the energy variation of the top and bottom of the
bands when the tip is nearby, as a function of the bias voltage. When the
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BN V=40V, V,= 02V

Fig. 1.7: Adapted from [12|. Conductance maps showing a ring-like
shape around a cobalt adatom on a graphene surface. The size of the
ring changes with the applied voltage, indicating a tip-induced effect.

() (b)

V>V, V=V,

Depth

Fig. 1.8: Band bending process of a valence band (VB), a conduction
band (CB) and a donor state (E;). (a-c) The form of the bands depends
on the applied voltage V in relation to the voltage necessary to com-
pensate the work functions of the semiconductor and the tip, V. (d)
Schematic representation of the band bending process as a function of

the depth.
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Fig. 1.9: Ring-like feature formation due to tip effects. The movement of
the tip bends the bands and the donor state, creating a ring-like feature
that depends on the voltage applied.

bias voltage applied is larger than the voltage V( necessary to compensate the
work function difference between the tip and the semiconductor, the bands
bend upwards (figure 1.8 a). When both voltages are equal, the bands are
flat (figure 1.8 b). In both cases, no particular feature is expected in the
conductance. However, when the voltage is low enough that the bands bend
downwards, the donor state E; crosses the Fermi level (figure 1.8 ¢). Electrons
must then fill the state, resulting in a sharp change in the tunneling current.
Figure 1.8 d shows the variation of the position of the bands in energy as a
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function of the depth in the material, in analogy to figure 1.6. This means
that this effect is only visible in defects at the surface or near the surface.

To see the formation of the ring-like signal formed during this process, we
can picture the band bending process as a function of the tip position with
respect to the defect. First, we consider a certain V; < V( where the bands
bend downwards. When the tip is far enough, the bands at the position where
the donor state appears do not bend. When the tip gets closer to the defect (at
the center), the bands bend until the donor state Ey lies below the Fermi level.
At this moment, electrons "jump" at Eg4, filling the state. This is measured by
the tip as a sharp signal in the conductance. The tip continues to move and
the electrons empty E4 when this level is about to move above the Fermi level,
leading to the same sharp feature than before. This process is schematically
represented in figure 1.9 and occurs in all directions surrounding the area
where E; exists, creating the ring-like feature. For a smaller voltage Vo < V;
< Vp, the bands bend more, and E; crosses Er for larger distances from the
defect, making the ring feature to have a bigger radius, as represented in figure
1.9.

1.3 Band inversion and topological features of
semimetals

Topology is a branch of mathematics that studies the materials under con-
tinuous deformations, such as distortion, but not breaking. A typical example
of two topologically different objects is the comparison between a cylindrical
loop and the Moebius loop, presented in figure 1.10. In a normal cylindrical
loop, there are two surfaces and two edges. A Moebius loop, however, has only
one surface and one edge. It can be easily seen that it is impossible to change
between these two loops using continuous deformations: if we want to obtain
one starting from the other one, we need to break the loop, twist it, and glue
it again. This means they have different topologies.

In analogy to this example, topological materials are those whose electronic
structures have some features that do not change without breaking the nature
of the material.
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Cylindrical loop Moebius loop

Fig. 1.10: A cylindrical loop and a Moebius loop. These two objects
have different topologies, and it is impossible to obtain one from the
other only by continuous deformations.

The first experimental example of a topological state was the integer quan-
tum Hall effect [18] in 1980 by Klaus von Klitzing, who won the Nobel Prize
in 1985 [19]. He discovered that, when measuring the Hall effect in a 2D elec-
tron gas at high magnetic fields, the result was a quantized conductivity. This
is the result of gapless states at the sample edge that form chiral channels.
But the classification of materials according to their topology started with the
discovery of topological insulators that, analog to the quantum Hall effects,
possess conducting states only at their edges.

1.3.1 Band inversion and topological surface states

In semiconducting and ionic materials, the conduction band is usually formed
by the s electrons, while the p and d electrons form the valence band. In
materials containing heavy elements, s-orbitals can experience an attractive
potential until they lie lower in energy than the p or d bands. Thus, these ma-
terials have an inverted orbital band character. Band inversion was predicted
in HgTe quantum wells in CdTe [20]. The CdTe band structure is represented
in figure 1.11 a, and consists of s states (blue) above the p-type band (red).
However, in HgTe, the band character is inverted: the s-type band lies below
the p bands (see figure 1.11 b). The band inversion leads to topologically
protected edge states and spin quantum Hall effect.

The band inversion can involve any pair of orbital characters. Figure 1.12
a represents two bands with different orbital character crossing at the Fermi
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Fig. 1.11: Adapted from [20]. (a) Band structure calculations for CdTe,
where the band with orbital character s (blue) is above the bands with
orbital character p (red). (b) Bandstructure calculations for HgTe, where
the orbital character is inverted.

level. Spin orbit coupling (SOC) opens a gap at the band crossing, leading to
a band inversion. Band inversion implies surface states imposed by topology.
Because the parity must be maintained in vacuum, there must be a parity
transformation at the surface where band inversion is lost. Eventually, the
upper s-type band crosses zero energy at the surface and becomes a lower
lying s-type band in the vacuum close to the surface. Conversely, the lower
p-type band crosses zero at the surface and becomes the usual upper p-type
band in the vacuum [21]. This leads to surface zero energy states which are
topologically protected. When the gap is completely opened, we have a Dirac
cone at the surface (figure 1.12 b). When the gap is not open, we have an
arc connecting band crossing points of the bulk where the parity is inverted
(figure 1.12 c).

Topological insulators

When the SOC completely gaps the band structure of the material, the
result would be an insulator. However, in topological insulators (TI), the
surface is metallic due to the presence of surface states, represented by the
dotted lines in figure 1.12 b. These surface states are topologically protected
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Fig. 1.12: Adapted from [22]. Gap opening due to spin-orbit coupling
and formation of surface states. (a) Two bands with different orbital
character cross at the Fermi level at some point in the Brillouin zone.
The two bands are gapped due to strong spin-orbit coupling (SOC),
leading to topological insulators (b) or topological semimetals (c).

Surface
state

and contain 2D Dirac points [23]. Dirac points are named as such because they
are formed by electrons that can be described using the Dirac Hamiltonian for
massless electrons. Thus, the energy dispersion around these points is linear.
Topological protected surface states have been measured in many topological
insulator materials [24-27].

Topological semimetals

When there are some points in the Brillouin zone where the bands touch,
the material is a topological semimetal (figure 1.12 ¢). The bulk crossing
points in these materials are topologically protected and can be described
using the Dirac or Weyl Hamiltonians for massless fermions [28]. Weyl points
always appear in pairs with opposite Chern number corresponding to the two
forms of the Weyl Hamiltonian and they can be defined as Berry curvature
monopoles that act as a sink and a source [29]. Dirac points are the sum of
two Weyl points with opposite Chern number at the same point in the band
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structure, making their topological number zero. The difference between Weyl
and Dirac semimetals comes from symmetry [23]. Under inversion symmetry
and time-reversal symmetry, every state in the Brillouin zone is degenerate.
Thus, the linear crossing points can only be Dirac points. In crystals without
an inversion center, in magnetic crystals and when applying a magnetic field,
the Dirac points turn into Weyl nodes and we say that the material is a Weyl
semimetal [30].

Some Weyl materials have been experimentally confirmed, such as the TaAs
family [31-34], or predicted to be Weyl semimetals, such as MoTes [35-37],
YbMnBi, [38] and LaAlGe [39].

Fig. 1.13: Schematic representation of a Fermi arc (yellow) connecting
the protections of two Weyl points (green and blue). Different colors in
the Weyl points represent opposite Chern numbers. Red arrows indicate
the Berry flux direction.

One manifestation of a Weyl semimetal is the presence of surface states
known as Fermi arcs, that connect the projections of the Weyl points at the
surface (see figure 1.12 b). Fermi arcs can be measured using different surface-
sensitive experimental techniques, such as ARPES [33, 36, 40-42| and quasi-
particle interference (QPI) [36, 43, 44].

Fermi arcs appear as an open contour in the surface Fermi surface, with its
edges located at the projections of the Weyl points in the surface [45]. Open
contours such as the Fermi arcs show some characteristic features in the QPI
maps, that will be discussed in chapter 2.4.1. Figure 1.13 represents two Weyl
points of opposite Chern number as a green and blue dot in the momentum
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space. As mentioned before, they act as a source and a sink of the Berry
curvature, represented by the red arrows. The Fermi arc is represented in
yellow on surface Fermi surface, and connects the projection of both Weyl
points.

1.4 Superconductors

Superconducting materials? are those whose resistance is exactly zero below
a characteristic temperature, called critical temperature, T.. Superconduc-
tivity was observed for the first time by Heike Kamerlingh Onnes in 1911.
After being able to liquefy Helium for the first time in 1908, he measured
the resistance of solid mercury at cryogenic temperatures. Around 4.2 K (the
temperature of liquid He), the resistance of Hg abruptly vanished [49]. In
1913, Onnes received the Nobel prize for his investigations on the properties of
matter at low temperatures [50]. In the next decades, superconductivity was
observed in many materials.

Superconducting materials can be classified in two types. Type I supercon-
ductors present the Meissner effect3 until the magnetic field is large enough
and the material is not longer in the superconducting phase. The evolution
of the critical magnetic field with the temperature follows the representation
in figure 1.14. Type II superconductors present Meissner phase until a first
critical magnetic field of H.y. When H exceeds this value, the superconductor
enters the mixed phase and has regions where the magnetic field can pene-
trate the material. In these regions the material is normal, while in the rest is
superconducting. This phase is known as mixed or Shubnikov phase [51] and
the areas where the magnetic field can penetrate are known as vortices. Type
IT superconductors enter the normal phase when the magnetic field increases
above a second critical field Hes. Critical magnetic field versus temperature is
represented in figure 1.14.

2This section follows the explanations of the superconductivity books written by
Schmidt [46], Tinkham [47] and Annett [48].

3The Meissner effect is the expulsion of the magnetic field from the interior of a
superconducting material below T..
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Fig. 1.14: Magnetic field versus temperature diagram for type-I (left)
and type-II (right) superconductors. For both types of superconducting
materials, the Meissner effect is present until a critical magnetic field. For
higher magnetic fields, type I superconductors enter the normal phase,
while in type II vortices appear in the so-called mixed phase. This phase
has also a critical field where the superconducting state disappears.

The vortices in type II superconductors are quantized. The quantization is
such that the magnetic flux through each vortex is a quantum of flux

h
o = - =207 1071 W, (1.23)
e

where h is the Planck constant. These vortices have a normal core of radius
of the order of the coherence length, &, where the order parameter ¥ is zero.
Around the vortex core, the superconducting electrons form supercurrents that
circulates in an area of the order of the penetration length, A\, around the core.
A schematic representation of an isolated vortex and its characteristics lengths
is shown in figure 1.15 a.

The interaction between vortices is repulsive, and they arrange forming a
triangular lattice, as represented in figure 1.15 b. As the magnetic field rises,
the density of vortices in the material increases and the intervortex distance
decreases, until, for H > H.o, the material enters the normal phase.
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Fig. 1.15: (a) Schematic representation of an isolated vortex. Variation
of the order parameter (yellow), magnetic field (purple) and the super-
conducting current (green) in the vortex are represented. (b) Schematic
representation of the top view of an Abrikosov vortex lattice.

1.4.1 Electron-electron attraction and BCS theory

The microscopic mechanism of the superconductivity was proposed to be
originated by phonon-mediated electron-electron interaction. This mechanism
is represented in figure 1.16. We consider two electrons (red) moving through
a crystal. The negative charge of the electrons attracts positive ions in the
crystal (blue). This enhances the positive charge and excites a phonon (see
figure 1.16 a). A second electron traveling trough this area is attracted by
the positive charge accumulation, absorbing the phonon (see figure 1.16 b). A
pair of electrons can have a bound state if there is an attractive force stronger
than the Coulomb repulsion [52]. The energy of this bound state is smaller
than Er, and they are known as Cooper pair. The BCS theory extends the
Cooper pair formation for all conduction electrons.

1.4.2 Superconducting gap, magnitude and T dependence

In the BCS theory, the fundamental state of the superconducting material
is described by a macroscopic wave function that keeps the coherence in a
distance of the order of £. This distance can be related to the spatial extension
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Fig. 1.16: Schematic representation of the phonon mediated electron-
electorn pairing. (a) An electron traveling through the crystal attracts
the positive ions in the crystal, exciting a phonon. (b) The accumulation
of positive charge attracts a second electron that absorbs the phonon.

of the Cooper wave function. The BCS description of the superconducting
ground state leads to the relation that describes the excited states of the system

B =v\/e2 + A2, (1.24)

where € = h2k?/2m — Ep is the kinetic energy respect to the Fermi level and
A is a constant. From this equation we can see that for an arbitrary small e,
the energy will be A above Er. Thus, A indicates a region in energy where
no states are allowed, the superconducting gap. The BCS theory establishes a
temperature dependence of this gap

A = 1.764kpT,, (1.25)

where kp is the Boltzman constant. Figure 1.17 a shows the dependence of
the superconducting gap as a function of the temperature. As the electrons
close to the Fermi level form Cooper pairs, the energy needed to break a pair
is 2A. For larger energies, the normal metallic band structure is recovered.

Taking into account that the density of states in the superconducting tran-
sition does not change, we have

Ny (er)dey, = Ny(Ey)dEy, (1.26)

where N,, and N, are the normal and superconducting density of states, re-
spectively. Using Eq. 1.24, we can write

NS(E)_{ 0, FE<A

= E
N.(0) | T B> A

(1.27)
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The dependence of the superconducting density of states normalized to the
normal density of states is represented in figure 1.17 b.
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Fig. 1.17: (a) Temperature dependence of the superconducting gap nor-
malized at T' = 0K. (b) Superconducting density of states Ny normalized
to the normal density of states N,, as a function of the energy.

Near T., Ginzburg-Landau equations can be derived from the BCS theory,
and the order parameter ¥ is proportional to the superconducting gap A. The
characteristics lengths ¢ and A can be written

7. \1/2
£(T) = 0.74¢ (T : T) | (1.28)
1 7. \\/?
ANT) = E)\L(O) (T — T) ) (1.29)
where A2 (0) = 535z and & = 232 from the BCS theory.

1.4.3 Two-band superconductivity

While in one band superconductors, pairing only occurs between electrons in
the same band, different gaps of different sizes can appear in the Fermi surface
of multiband superconductors [53| such as MgBy [54-57|. In this case, Cooper
pairs might form through electron-phonon interaction within the same band
(intra-band) or different bands (inter-band). The size of the gap can change
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Fig. 1.18: Temperature dependence of a two gap superconductor with
A; and A,. Purple lines indicated the BCS dependence for the two gaps.
The interband scattering modifies the T, of the smaller gap, that deviates
from the BCS theory (green dotted line).

depending on the strength of the electron-phonon interaction in different por-
tions of the Fermi surface. This is known as multi-band superconductivity.

If we neglect interband scattering and we take the unphysical situation of two
completely separate bands, there are two critical temperatures. A real material
shows certainly band interactions (for example interband scattering) and has
only one critical temperature. Nevertheless, the temperature dependence of
the superconducting gap is influenced by the interband interactions.

1.4.4 Anisotropic superconductivity

In the BCS theory, the s-wave order parameter is isotropic for a spherical
band Fermi surface and the value of the gap A is a constant. However, it
is possible to have an anisotropy in the gap in k-space if there is anisotropy
in the electron-phonon interaction. Some materials can present more com-
plicated gap anisotropies, where the gap can even be zero at some points in
the k-space. Studies on the 3He superfluidity showed the possibility of pure
fermion-fermion interaction forming a condensate [58-60]. In this case, the
angular momentum of electrons L is different from zero, and the BCS gap
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equation decouples into independent paring channels for L. = 0, 1, 2, .... Thus,
some channels may present attractive interactions even if the fermion-fermion
interaction is repulsive. Unconventional superconductivity arises when at least
one of these channels presents a superconducting transition at a certain T, [61].
The Coulomb interactions are minimized due to the sign changes in the gap
function, which may involve pair wavefunctions with L # 0. The time scale of
electronic fluctuations is comparable to the motion of the electrons, making
paired electrons use space instead of time to avoid Coulomb repulsion. This
results in a highly anisotropic gap function in momentum space that can even
have nodes when the sign changes. For example, in cuprates L = 2, so they
present a d-wave gap function with nodes, showing d,2_,2 superconductivity
[62, 63] (see figure 1.19 b).
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Fig. 1.19: Comparative between gaps with different symmetries. Red
and blue color indicated different sign. (a) Isotropic BCS gap. (b) d,2_,2
gap, where nodes are marked as purple dots. (¢) s~ gap.

In multiband systems such as iron-based superconductors (FeBSCs), instead
of a pair wavefunction with finite angular momenta, it is assumed that the
wavefunction changes sign on different sheets of the Fermi surface. In figure
1.19 ¢ an example of a two band model is shown. Here, the band in the
center of the Brillouin zone (usually a hole pocket) and the band in the outer
sheets (usually an electron pocket) are both isotropic, but they present different
relative signs. This state is known as s™~ and, although it does not have nodes,
it shares with the d;2_,2 the change in sign. s*~ symmetry is the most accepted
scenario for the majority of FeBCSs.

Furthermore, some superconducting systems share the same low energy exci-
tation characteristics of topological insulators, presenting a topologically pro-
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tected surface state. For example, spin triplet p + ip wave superconductors
[64].

1.5 Superconductivity and magnetism in Fe based
systems

In 1986, J. G. Bednorz and K. A. Muller discovered the high critical tem-
perature superconductivity in cuprates [65]. In these materials, the pairing
mechanism is different from the conventional phonon-mediated explained by
the BCS theory. Thus, they are know as unconventional superconductors.
Materials in the cooper-oxide family become superconducting at critical tem-
peratures as high as 130 K [66]. In 2006, a new family of unconventional
superconductors was discovered. That year, the first iron-based superconduc-
tor discovered was LaFePO, with a T, = 4 K [67]. However, the discovery of
LaO;_,F,FeAs in 2008 [68], with a T of 26 K, opened the study of iron-based
superconductors, whose properties challenged the uniqueness of cuprates as
high T, superconductors [67, 68]. Fe-based materials belong to the group of
unconventional superconductors, where the pairing mechanism is not the con-
ventional BCS phonon coupling. They can have critical temperatures in bulk
crystals as high as 55 K [69, 70|, and critical magnetic fields that reach 60 T
[71].

FeBSCs are formed when combining Fe with pnictogens (P, As) or chalcogens
(S, Se, Te). They can be classified in families, depending on the stoichiometric
relation between the elements: 11 (FeSe), 111 (LiFeP), 1111 (LiFePO), 122
(KFeaAssy), ete. All of them share a layer formed by a square lattice of Fe
atoms bond to the pnictogens or chalcogens. These layers have quasi-two-
dimensional character and can be stacked together (for example in FeS or
FeSe) or separated by one or several layers of other atoms |72, 73|. Similar to
cuprate superconductors where superconductivity emerges in the CuO planes,
it is thought that the superconductivity in FeBSCs originates in the iron layers.
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Fig. 1.20: Generic temperature vs doping/pressure diagram of Fe-based
superconductors. In general, these materials have an AF phase with
strong nematic properties in the stoichiometric compound. When doping
or applying pressure, AF disappears first and then nematicity. When
suppressing nematic and AF order, superconductivity emerges. Often,
the maximum value of T, is close to the extrapolation of the AF and
nematic lines to zero temperature.

1.5.1 Phase diagram of high Tc superconductors

Most of these materials are usually antiferromagnetic (AF) in stoichiometric
compounds. The magnetic phase disappears with electron or hole doping or
under pressure. In the pnictides, a nematic phase appears in connection to AF.
The nematic and AF transitions are often associated to a structural transition.
The crystal structure changes from a high temperature in-plane symmetric
(tetragonal) phase to a low temperature in-plane anisotropic orthorhombic
phase. Superconductivity is found in the low temperature portion of the phase
diagram. Often, the critical temperature is highest when the magnetic and
nematic phase transitions vanish at zero temperature.

FeBSCs are correlated systems with multiband superconductivity, where the
Cooper pair wavefunction changes its sign in different areas of the Fermi surface
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(see figure 1.19 in previous section). In the most accepted scenario, the su-
perconductivity occurs thanks to spin fluctuations with the antiferromagnetic
vector connecting electron and hole pockets.

Only a few stoichiometric compounds are found to be superconductors (see
Table 1.1). This is the case of the FeSe, whose superconductivity was reported
only two months after the 122 systems [74]. This material attracted much
attention due to its structural simplicity. Although the critical temperature
is not very high, this material is a good candidate for studying the interplay
between superconductivity and nematicity in absence of magnetism.

Compound | T, (K) | Reference
FeS 5 [75]
FeSe 8.5 [74]
LiFeP 6 [76]
LiFeAs 18 7]
LaFePO 6 [78]
KFGQASQ 3.8 [79]
CaKFe Asy 35 |80]

Table 1.1: Stoichiometric Fe based superconductors. Critical tempera-
tures and references are indicated.

Some FeBSC can present topological states coexisting with the superconduc-
tivity [81]. This is the case for Fe(Te,Se), where a band with orbital character
p appears near the Fermi level, leading to a band inversion and topological
superconductivity [82].

1.5.2 Electronic properties and band structure

The main electronic properties of this family of materials at the Fermi level
are derived from the Fe d-electron orbitals. Several bands cross the Fermi
level, resulting in multi-band materials dominated by the iron d,, d,. and
dy orbitals [83]. The Fermi surface is usually formed by quasi-2D electron
and hole cylinders. Two or three hole pockets are located at the center of the
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Brillouin zone I'. Two electron pockets are located at X point (7, 0) and Y
point (0, 7) positions in the tetragonal unit cell [83] (see figure 1.21 b).

Pnictogen or chalcogen atoms in the layers above and below the Fe layer
occupy non-equivalent positions in the low temperature magnetic and/or or-
thorhombic phase, resulting in a folding of the Brillouin zone to include two
Fe atoms in the unit cell [84]. Electron pockets are set at the M point (7, )
of the new unit cell by the folding vector (figure 1.21 c) [83].
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Fig. 1.21: Adapted from [83]. (a) Top view of the unit cell of an iron-
based superconductor. Dashed green line and solid yellow line indicate
the 1-Fe and 2-Fe unit cells, respectively. (b) Schematic Fermi surface on
the 1-Fe Brillouin zone. Gray circles indicate hole pockets and purple and
orange ellipses indicate electron pockets. The blue arrow indicates the
AF vector along which there is a band folding in the magnetic/nematic
low temperature phase. (c) Folded BZ, whose boundaries are now the
yellow lines.

Superconductivity with st~ symmetry requires electronic interaction to be
stronger between different pockets than within them [73, 85]. Spin fluctua-
tions have been consensually established as the main mechanism behind the
inter-pocket interaction as the ¢ vector of the spin density wave ground state
coincides with the distance between electron and hole pockets in reciprocal
space.
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1.5.3 Nematicity

Nematic order in FeBSC breaks the rotational symmetry, while the trans-
lational symmetry remains [73, 86]. Various mechanisms can produce this
transition and, in general, order parameters related with the lattice, orbital
and spin order can be defined.
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Fig. 1.22: Adapted from [86]. Breaking of the different order parameters
in the nematic phase. (a) Unit cell structural distortion making a # b. (b)
d,. and d,,, orbitals splitting. (c) Uniform spin susceptibility anisotropy.

In the nematic phase, the rotational symmetry breaks by making the x and
y directions non-equivalent in the Fe plane, resulting also in a tetragonal to
orthorhombic transition (a # b). The difference between a and b is generally
very small in FeBSC, a few 0.01 % [87, 88]. This is accompanied by a change
in the orbital character that occurs when the degeneracy between d,, and d,,
Fe-orbitals is lifted at the nematic transition, producing a two-fold distortion
in the Fermi pockets. Finally, the spin order changes as the static spin suscep-
tibility becomes different along the ¢, and ¢, directions of the BZ [86]. At the
low temperature phase, orbital, magnetic and structural degrees of freedom are
modified. We can define three order parameters, all of which have been shown
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to evolve inside the low temperature phase [86]. Figure 1.22 represents the
order parameter change in the nematic phase for the three orders parameters.

1.6 Scope

In the following chapters, I will present the work accomplished during my
PhD thesis. Many recent discoveries in condensed matter physics rely on the
connection of electronic structures and topology. By using STM, I have studied
magnetic and non-magnetic Weyl semimetals and a superconductor, all having
few states at the Fermi level. From my measurements, I obtained new insight
due to the peculiar properties of the band structure and the number of states
close to the Fermi level in each system.

In chapter 3, I studied the band structure of WTey, a semimetal where the
density of electron and hole bands is nearly exactly equal. I will show detailed
measurements of the Landau quantization of the bands when a magnetic field is
applied. These measurements give information about the bulk band structure
and surface states.

In chapter 4, I present measurements in Co3zSnoSo, a layered magnet with
a kagome lattice that produces a flat band. I measured the effect of isolated
Sn atoms on the flat band and electronic end states at chains of Sn formed at
the surface.

In chapter 5, I studied the magnetic semimetal EuCdsAss, where we find an
insulating surface. At this surface, impurities create discrete quantized states
spanning distances of several tens of nm. Under magnetic fields, the states are
further quantized due to Landau quantization.

Finally, in chapter 6, I studied the superconductor FeSe, where a transition
to an orthorhombic state produces a highly anisotropic semimetal. I char-
acterized the bulk band structure using quasiparticle interference and found
a localized state on the defects. In this material, we find a behavior that is
unique to semiconductors or insulators, in a good metal.

In all, this work provides a bridge from a material with practically no cor-
relations (WTeg) but a topologically non-trivial band structure, to a mate-
rial (FeSe) where electronic correlations are dominating nearly all observables.
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Correlations are also important in EuCdsAss to explain magnetic interactions
and in CozSnsSy through the geometrical properties of the kagome lattice. We
thus see that the tunneling conductance at the surface addresses relevant issues
in the band structure of solids, obtaining a picture that encompasses radically
new electronic properties.
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Experimental Techniques

6 HE Scanning Tunneling Microscope (STM) was designed and devel-
J oped by Gerd Binning and Heinrich Rohrer in 1981 at IBM [89].
This powerful invention marks the beginning of the studies at the

nanoscale level. The huge impact of this technique is reflected in the Nobel
Prize both scientists received in 1986 [90]. Over the last 40 years, the STM

has proved to be an extremely powerful and versatile tool, applied to several
fields in condensed matter and applied physics.

In this chapter, I will review the principles of the Scanning Tunneling Mi-
croscopy at very low temperatures and high magnetic fields. I will describe
the experimental set-up needed for measuring in such conditions. 1T will also
explain the 3He-*He dilution system necessary for measuring at temperatures
around 100 mK. Finally, I will describe the techniques used for measuring and
the electronic system installed to improve the measurements.

2.1 Overview of the experimental setup

The experimental setup used during this PhD consists of a home-made Scan-
ning Tunneling Microscope made of non-magnetic Shapal. Shapal is a ceramic
material that avoids Joule heating produced by Foucault currents when chang-
ing the magnetic field. This STM has been developed during a previous PhD
thesis in our group [91].
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The STM is located in the center of a superconducting coil that can reach
magnetic fields up to 17 T. This coil is placed inside a low-temperature cryostat
that can reach temperatures of 2 K. A photograph of the laboratory is shown
in figure 2.1 a, where the main parts are indicated. During this work, the
set-up was significantly improved by installing it on a floating floor for noise
reduction. Also, a Low-Noise High-Amplification (LHA) digital electronic has
been installed, improving the velocity of the measurements for the same reso-
lution [92]. Finally, we significantly improved the temperature control, adding
a heater that has allowed to perform systematic measurements as a function
of the temperature from 2 K up to 60 K. The process of heating and cooling
the samples is faster than in a cryostat with a dilution refrigerator.

2.1.1 Noise isolation

When measuring with an STM, isolation from mechanical noise is extremely
important. As the tunneling current depends strongly on the distance between
the tip and the sample (see section 2.2), the experiment is highly sensitive to
mechanical vibrations. The tunneling current has an exponential dependence
on the sample-tip distance: a change of 1 A in this distance typically produces
a change in the tunneling current of one order of magnitude. Thus, the design
of the STM head is crucial [92]. The head can be considered as a damping
oscillator with resonance frequency wg. The STM itself damps vibrations for

w < wp, with damping going as o< (wi())2 for low frequencies [93]. We can con-
sider wp » wy, ~ 10* Hz, where wp is the resonance frequency of the piezotube.
The floor vibrations can be considered to decrease above 102 Hz. As we show
below, the STM has a scanner which is often a piezotube. The piezotube has
a resonance frequency close to the wy, w, ~ wy. Thus, if the rest of the STM
is more rigid than a piezotube, floor vibrations are damped by at least 10~

To reduce the noise vibrations, we installed the STM in a building separated
from the main building with the usual activity. A photograph of the laboratory
is shown in figure 2.1 a, where the main parts are indicated. To further isolate
the experiment, the cryostat is fixed to a 10 tons reinforced concrete floating
floor. This floating floor is held by 16 springs and mechanically isolated from
the building. The resonance frequency of the floating floor is around 1 Hz
[92]. The blueprint of the laboratory is shown in figure 2.1 b. The position
of the cryostat, the springs and the center of mass are indicated. The floor
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Fig. 2.1: (a) Photograph of the laboratory showing the experimental
setup. (b) Blueprint of the floating floor. The position of the springs,
the cryostat and the center of mass are indicated. The horizontal scale
line is 50 ¢cm long. (c) Sketch of the laboratory showing the floating floor
held by springs. The floating floor is separated from the pump room and
the main part of the laboratory, where the remote control system allows
us to take the measurements without disturbing the experiment. The
main parts are indicated.

has four anchor points at the corners that can attach the floor to the walls.
The grid indicates the concrete mesh. The sketch in figure 2.1 ¢ shows how
the floating floor is held by the springs. The pump room and the room where
the experiment can be controlled remotely are separated from the experimental
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Fig. 2.2: (a) Photograph of the 17 T superconducting coil. The main
parts are indicated. (b) Scheme of the superconducting coil inside the
cryostat and the cooling due to the lambda plate. (c¢) Scheme of the two
materials in the superconducting coil. (d) Scheme of the superconducting
wires in a cooper matrix.

room. The remote control computer system allows us to control the experiment
without disturbing the measurements. The tube that goes from the experiment
to the pump goes through a sandbox to reduce the noise due to the vibrations
of the pump.

2.1.2 Superconducting magnet up to 17 T

The magnet used is a superconducting coil that can reach 15 T at 4.2 K
and 17 T at 2 K. A photograph of the coil is shown in figure 2.2 a, where
the lambda plate and the anti-vibration structure are indicated. This anti-
vibration system is designed to clamp the coil to the inner side of the cryostat,
preventing noise. The coil consists of a wound coil of superconducting wire and
is operated inside a helium bath. Superconducting coils can have a persistent
field. To do so, the coil is shunted by a superconducting wire with a heater,
far from the high field region. The heater is switched on while charging the
coil, so the shunt becomes normal and the current can flow inside. Once the
current is applied, the heater is switched off, and the current remains inside
the superconducting coil. Thus, the magnetic field remains applied as long as
the coil temperature is under the critical temperature of the superconducting
wires.
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This magnet is made of two concentric coils separated by an aluminium
tube, as seen in figure 2.2 c¢. The outer coil is made with NbTi wires and
the inner one with NbsSn. These two materials have been selected by their
properties, being the outer material the one with a smaller critical field and
current. In figure 2.2 d we can see a scheme of a section of a superconducting
wire, where different wires of the superconducting material go inside a cooper
matrix.

On the top of the coil, there is a copper serpentine called lambda plate loop,
as represented in figure 2.2 b. At one end, there is a pump line. At the other
end, there is a needle valve, which controls the flow of liquid helium passing
through. When we pump the helium through the lambda plate, the bath
temperature below the lambda plate can decrease, reaching around 2 K. The
temperature in this area is constant because the difference in helium densities,
when cooled, creates convection flows. Above the coil, there is a temperature
gradient such that the upper part of the bath, at ambient pressure, reaches 4.2
K. With this method, the cryostat can be refilled without heating above 2 K.

2.1.3 He-*He dilution refrigerator

By using a dilution refrigerator we can cool below 100 mK. The dilution
fridge is very stable and can be running for months while refilling with He
only once a week, which is an important advantage for long spectroscopy mea-
surements.

The dilution refrigerator is based on the quantum properties of the mixture
of 3He and *He, that goes through different stages until reaching such low
temperatures. In figure 2.3 there is a photograph and a scheme of the dilution
refrigerator used in this thesis. First, the mixture is injected through a con-
densing line to the 1 K pot, a small container connected to the outer helium
bath in the cryostat. By pumping this container with the *He pump, the tem-
perature can go down 1.5 K. As the temperature where the mixture liquefies
is below 4.2 K, the 1 K pot is a necessary stage to precooled it. Then, the
mixture goes through several continuous and discrete heat exchangers, where
it is cooled down using the enthalpy of the outgoing mixture. The mixture
then reaches the mixing chamber, where we have the lowest temperature. In
this part of the dilution refrigerator the mixture separates in two phases: we
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Fig. 2.3: Photograph and scheme of a dilution refrigerator, where main
parts are indicated.

have the concentrated 3He phase floating over the dilute *He phase. The mix-

ing chamber is connected to the still or evaporator, going up again through
the heat exchangers. By pumping the still, 3He atoms in the dilute phase
are constantly removed, producing an osmotic pressure gradient between the

still and the mixing chamber. Then, 3He atoms are forced to cross the phase

boundary in the mixing chamber and going towards the still. The process of
passing atoms of 3He from the concentrated phase to the dilute phase provides
the cooling power. Pumped 3He atoms from the still are injected again, after

being purified in a nitrogen trap with activated carbon filters.
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Fig. 2.4: Schematic representation of the tunneling process in a vacuum
barrier of width d. The electron wave functions of the tip and sample
(¥ and ¥y) decay exponentially in the vacuum and overlap, allowing the
tunneling process. In the scheme, a positive voltage eV is applied to the
tip, so electrons tunnel from the tip to the sample, filling its unoccupied
states.

2.2 Scanning Tunneling Microscopy

2.2.1 Operation principles

The STM operation is based on the quantum tunneling of electrons between
two electrodes: the tip and the sample. When the tip is close enough to the
sample, both wave functions overlap, and the electrons can travel from the
sample to the tip and vice versa.

Using time-dependent perturbation theory, Bardeen evaluated the tunneling
matrix elements to understand the tunneling junction experiments in 1961 [94].
In 1983, Tersoff and Hamann used a modified Bardeen’s theory to describe the
STM [95, 96| considering typical distances and sizes found in experiments,
around 10 A,
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Assuming weak interaction between tip and sample and elastic tunneling,
the tunneling current, I, between the tip and sample (¢ — s) and between
sample and tip (s — t) are

o= 25 [P N (B N (B [ (B) (L= F(B)) B, (2)
It—»s = ﬂhe _: |M|2 Ns (ES) Nt (Et) [f (Et) (1 - f(Es))] dE> (22)

where e is the electron charge, h is the Plank constant, [M|? is the tunneling
matrix element described by Bardeen, N, and N; are the density of states
(DOS) of the sample and the tip and f(E,T') is the Fermi distribution function
for an energy E and a temperature T’

1
f(ET) = ——= (2.3)
1+e kBT

The tunneling current is the difference between them
I'=1st—Iiss =

- PN (B N B [ (B (- 1) - () (1- £(E)]
(2.4)

When a voltage V' is applied between the tip and the sample, the Fermi
levels of both electrodes are separated by eV, and we can write F = F; and
Es = F - eV, and the tunneling current

I= 4%6 _: \MP? Ny(E - eV)N(E) [f(E-eV) - f(E)]dE.  (2.5)

We can understand the electronic transport through tip and sample by mod-
eling the junction as a barrier of width d and height ¢, where ¢ is the average
work function of the tip ¢; and sample ¢4, as represented in figure 2.4. In
the limit where eV <« ¢, the matrix element |M| does not have an energy
dependence. We can write

I o foev Ny(E - eV)N(E) [J(E - eV) - f(E)]dE. (2.6)
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In the present thesis, gold tips were used in almost all experiments at very
low temperatures, so the density of states of the tip can be considered constant
in the range of energies we are studying. Taking the derivative of Eq. 2.6,
we obtain that the tunneling conductance is proportional to the convolution
between the density of states of the sample and the derivative of the Fermi
distribution function:

o(eV) = j_é o [m S(E)Mdﬂ (2.7)

The derivative of the Fermi distribution function has a bell shape whose
width is given by kgT. At low temperatures, this function tends to a Dirac
delta function § (E —eV'), and the tunneling conductance can be taken as
proportional to the density of states

(V) = d](V)

o< Ny(E =eV). (2.8)

Thus, with the STM we can directly measure the density of states of our
sample. The wave functions of each the tip and sample decay exponentially
inside a barrier of width d:

U, o< g he ) 2Mme 1
{ W, oc ehld-) with k =/ 7 ® 0.5\/5 A (2.9)

where m, is the electron mass and ¢ is the work function of the tip and the

sample in eV. Using these wave functions in Bardeen’s formalism, we find that
I oce20d, (2.10)

This expression means that changes in the measured current are considerable
for small changes in the distance. In this way, STM shows a very high sensi-
tivity to the distance between the tip and the sample. Usually, ¢ ~ 5 eV (for
typical metals, such as Au and Pt), which means that changes of 1 A in the
tip-sample distance translate into changes of one order of magnitude in the
current.

Although the tunneling effect is the one that gives its name to the STM,
it is worth noting a second significant effect: the piezoelectric effect. Piezo-
electric materials are characterized by their expansion or contraction when
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applying voltage. Tip displacements can be controlled at sub-nanometric scale
by attaching the tip to a piezotube that deforms in the order of some nm/V.
The piezotube we use has five electrodes, which allow the movement in X, Y
and Z directions by applying voltages in the three pairs of electrodes. The
representation of the movement of the piezotube can be seen in figure 2.5.
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Fig. 2.5: Schematic representation of the piezotube movement in all
directions. The applied voltage to the two pairs of electrodes produces
its deformation in X, Y (that allows the sample scanning) and 7Z (that
controls the tip-sample distance).

The piezotube deformation in all directions depends on its geometry, the
piezoelectric coefficient of the material used, d31, and the voltage applied [97].
The deformation in the three dimensions of the space can be described with

- _ 0.9d;3V1?
AX = AY = 220

(2.11)
_ dislV
AZ =Dl

where [ is the length of the piezotube, t is its thickness and d,, is the average
value of its external and internal diameters. In the present experimental setup,
d3; =-0.31 A/V at 4.2 K [98],1=12.75 mm, deyy = 3.19 mm and t = 0.32mm,
so we can measure a window of 1.62 ym and height differences of 0.2 pm.

To bring the tip from macroscopic separation into tunneling distance, we
need a motor that can be operated in situ. The piezotube is thus attached
to a prism, moved along the z-direction using a motor held to the head of
the microscope. This prism is attached horizontally by a spring, doing some
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Fig. 2.6: Schematic representation of the constant height and the con-
stant tunneling current modes. In (a), the tip height is constant during
the scan and the tunneling current is recorded. In (b), the tunneling
current is the same during the scan, and the piezotube height changes
following the sample.

pressure to a set of stacks of shear piezos. A fast sawtooth signal is applied
to these stacks. When the slow ramp is applied, the piezostacks deform up
or down, sweeping along the prism with the piezotube. Once the fast ramp is
applied, the piezostacks return to their original position. However, the prism
slides and remains up or down. To allow this sliding, two pieces of alumina are
located between the piezostacks and the prism. This movement can be of the
order of several mm, so that it is possible to overcome the height difference
between samples. This displacement is called Z’ to distinguish from the vertical
movement of the piezotube, Z.

Combining the tunneling and piezoelectric effects, we can scan the sample
and obtain a surface map. To do this, two different modes can be used: con-
stant height and constant current modes. In the constant height mode, the
position of the piezotube in Z is constant, while the variations in the tunnel-
ing current are registered as a function of the position of the tip in the x-y
plane, obtaining the corrugation of the sample, as represented in figure 2.6
a. This method is limited to very flat surfaces, where the height variations
should be smaller than the distance between the tip and the sample at the
beginning of the measurement. In the constant current mode, the tunneling
current between the tip and sample is set constant, and the variation of Z,
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the height of the tip, is registered while scanning the sample in the x-y plane.
This scanning mode is represented in figure 2.6 b. The constant value of the
current between the tip and the sample is set using a PID feedback loop that
adjusts the height of the tip at every position. All the images presented in this
thesis were acquired using this method.

2.2.2 Data acquisition

(a) (b)

LHA electronic

X,Y, Z control

IV converter

Bias voltage

Fig. 2.7: (a) Schematic representation of the control electronics. The
bias voltage forces the electrons to move from the tip to the sample or
vice versa. The TV converter transforms the tunneling current [ to a
voltage with a typical conversion factor of 0.1 or 1 nA/V. (b) From top
to bottom, photograph of the LHA electronics, the front panel and the
back panel.

For operating the STM, we use the LHA-Digimod model, a digital electron-
ics unit developed at the university workshop SEGAINVEX [99]. This single
device contains all the signals and ports we need to measure in our system. It
contains five ADCs (analog to digital) channels for reading the signals, indi-
cated with the number 1 in figure 2.7 b and three auxiliary DAC (digital to
analog) signals. One of the ADC modules is used for reading the tunneling
current signal, which goes first through a current to voltage converter with a
gain that can be set between 10° and 10° V/A. The DAC modules provide
signals between -10V and +10 V. The one used for the bias voltage is usually
attenuated using a voltage divider. DACs’ signals sent to the piezos are am-
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plified by a factor of 14. They are sent by the connector indicated with 7 in
the figure 2.7 b. We also find a digital auxiliary output (3), a USB port for
connecting the electronics to the computer (4), an input for the control Z (5)

and an auxiliary input for the Z control (6).
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Fig. 2.8: Screenshots of the principal windows of the measuring program.
(a) Scanner interface. (b) Interface for the live preview of the scan. (c)
Digital PI (proportional integral) feedback interface window. (d) Coarse
vertical motion (Z’) control window. (e) Curve acquisition interface.

The control electronic uses a homemade software developed in a Pascal

programming environment called Delphi. It contains all the tools for scanning
the sample and taking the spectroscopy curves. Screenshots of the windows
of the program are shown in figure 2.8. The program includes an interactive
window (figure 2.8 a) that controls the position of the tip in the window we
can measure. This is indicated with a blue cross in the center of a blue square
that marks the size of the window we want to scan. When scanning, a window
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with the preview of the scan appears (figure 2.8 b). We can also control the
PI (proportional integral) feedback (c), the macroscopic movement of the tip
(d) and the acquisition of spectroscopy curves (e). We can perform scanning
tunneling spectroscopy (STS) by combining the scan and spectroscopy. This
technique will be described in section 2.4.

2.3 STM at very high magnetic fields

Like all the microscopes used in the low temperature laboratory of the UAM,
the STM used during this thesis is a homemade design. This STM is made
of non-magnetic Shapal and was built in SEGAINVEX facilities [99]. Shapal
is a ceramic material based on aluminium nitride. Ceramics have interesting
properties, such as the absence of Foucault currents, making them perfect
candidates for experiments at high magnetic fields. Unfortunately, one of
the main problems with this kind of material is its difficulty to be machined.
Shapal can not only be machinable, but it presents a high thermal conductivity,
a low thermal expansion and a high mechanical strength.

Material Density | Young’s Modulus | Ratio x100
(kg m~?) (GPa)

Ti Grade 5 (Ti6A14V) 4420 110 2.4
Al 7075 2700 70 2.5
Macor 2520 66 2.6
Shapal 2900 190 6.6
Sapphire (a-AlxO3) 3980 340 8.5
WC 15500 550 3.5

Table 2.1: Adapted from [100], properties of typical materials used for
STM.

Figure 2.9 shows a photograph and a sketch of the STM and its main
parts. This design allows three different movements: the 3D movement of
the piezotube with the tip, the vertical displacement of a prism holding the
piezotube and the horizontal movement of the sample holder. The sample
holder is located inside a track at the base of the STM. To move the sample
holder, we use a thread attached to a piano wire [92|. This piano wire is
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Fig. 2.9: Photograph and sketch of the STM made of Shapal. Horizontal
scale bar indicates 10 mm.

soldered to a spring at the lower part of the insert and to a micro-metric screw
at the top of the experiment, as represented in figure 2.11 c. By screwing
it, the piano wire pulls the sample holder backwards. A spring is attached to
the front of the sample holder to move it in the reverse direction. When the
sample holder is in the front part, the spring is in the equilibrium position.
When the micro-meter screw is unscrewed, the piano cord relaxes its tension,
and the spring pulls the sample holder to the front of the tracks. In order to
keep the sample holder stable and horizontal, another spring is attached to the
bottom.

This system allows a horizontal movement that can be controlled mechani-
cally without modifying the temperature of the experiment. With it, different
parts of the sample can be reached, moving macroscopically in one direction.
But this displacement also allows changing the position of the tip over the
sample holder. If a sample made of the same material than the tip is placed in
the sample holder, the tip can also be cleaned and sharpened by a controlled
nanoindentation process, as described in reference [101]. Different steps of this
process are schematically represented in figure 2.10 a. This method allows to
form single atom point contacts, whose conductance is given by the quantum
of conductance Gy = 2¢2/h in gold [102]. Typical curves obtained during this
process at 4.2 K are showed in figure 2.10 b. By taking thousands of these
curves, we can represent the results as a normalized conductance histogram,
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Fig. 2.10: (a) Representation of the nanoindentation process. The
scheme shows different steps. When the tip crashes, it forms a single
atom contact and finally separates from the sample. (b) Typical curves
at 4.2 K obtained in this process, where the first step is at Go. (c¢) The
histograms at 0 T and 14 T were obtained by taking thousands of the
previous curves.

with a huge and clear peak at GGg. In figure 2.10 ¢, those histograms for 0 T
and 14 T are presented. We can see that we can obtain the same results at
0 T and 14 T (small difference are found however, which we will discuss in a
publication in preparation).

In addition, the movement of the sample holder also allows us to cleave the
samples in situ. Depending on the sample, the cleaving process can be by
breaking or exfoliation [103]. For cleaving the sample, a small piece of alumina
is glued to the top part of the sample. This piece needs to be the same size
and shape as the sample, but large enough to tower over the tracks described
above. Different parts are indicated in figure 2.11 a and b. When the sample
holder is pushed backwards with the screw, the alumina collides with a piece
fixed to the base of the STM, as represented in figure 2.11 d and e. Usually,
this piece is a ceramic blade or a copper bar. As the forces between layers in
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Fig. 2.11: Photograph (a) and sketch (b) of the base of the STM with
a sample. The horizontal scale bar is 10 mm. (c¢) Representation of the
pulling system. The thread and the piano wire are soldered to a string,
allowing the movement of the sample holder forward and backwards.
From (d) to (f), different steps of the cleaving process are represented:
the sample holder is pulled backwards (d) until it hits the ceramic blade
(e), where the sample exfoliates and the counterweight falls, avoiding the
alumina to stay between the tip and the sample (f).

the sample are weaker than the glue used to fix the alumina, the sample is
exfoliated, as represented in figure 2.11 f. Furthermore, a thread is glued to
the top of the alumina with a counterweight on its other end. Doing so, when
the sample is exfoliated, the alumina and the exfoliated part of the sample fall
to the bottom of the vacuum chamber, and nothing stands between the tip
and the sample. Finally, to avoid sticking or hitting the tip with the exfoliated
sample, a guide for the thread is screwed at one side of the track. Figure 2.12
shows photographs of all the crystals measured during this thesis before and
after the cleaving process. Layered samples such as WTes, NbSes, CrSiTes,
TaTey, FeSe or FeSep 715029 are easily cleaved using the method described
before. Layered but stronger samples such as CozSnaSo or FuCdsAssy are more
difficult to cleave successfully. Other samples such as PdSby and YbAgGe are
not layered, and the cleaving method needs to be modified. In these cases we
need to break the sample using an alumina blade, hitting the sample directly,
without a glued post.
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CrSiTe,

Fig. 2.12: Photographs of the samples before (left) and after (right)
cleaving during this thesis.

Material | Number of samples
NbSeg 2
WTGQ
TaTe4
FeSe
FeSe.7150.29
CrSiTe3
PdShb,
3D crystalline YbAgGe
materials Co3SnySo
Equ2A82

Van der Waals

materials

Oy O O O = o W W

—_
DO

Table 2.2: Number of times the samples have been cleaved during this
thesis.

In all the cases, a careful preparation of the samples is very important.
Smaller samples usually result in flat surfaces more easily than larger samples
and the shape and size of the alumina glued on top need to be as similar as
possible to the sample. Even then, several samples usually need to be cleaved.
Table 2.2 shows the number of times the samples have been cleaved during
this thesis.
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2.4 Scanning Tunneling Spectroscopy

Using Scanning Tunneling Spectroscopy (STS), we can measure the local
variations of the density of states in the material. While topography images
give the convolution of the DOS between the Fermi energy and the applied bias
voltage, STS allows measuring the energy dependence of the DOS. For doing
that, the tip scans the surface of the sample as described above. Then, the
tip stops at every position, and the feedback loop is opened while varying the
voltage to take a current vs voltage curve. The feedback loop is reconnected,
and the tip moves to the next point. Doing so, we obtain a topography image
and a voltage vs current curve for each pixel. By numerical derivation of the
voltage vs current curve, we obtain tunneling conductance maps as a function
of the position and the voltage (see figure 2.13). Within this PhD, we achieved
a considerable gain in acquisition time, thanks to the new electronics mentioned
above.

We analyze these files using software based on Matlab environment. This
software includes numerous features required for data analysis, such as plotting
current and conductance maps at every energy, Fourier transform spectroscopy,
rotation and symmetrization of the maps, or plot current and conductance
curves at any point in the image [104].

2.4.1 Quasiparticle interference imaging

With STS measurements, we can study the quasiparticle interference scat-
tering (QPI) to get information about the band structure of the material. The
relation between the measured local density of states (LDOS) and the eigen-
states W(7)) is given by the expression

LDOS(E,r) o ; W (7)) 5 (E-e(F)), (2.12)

where k are the wavevectors and e(k) is the dispersion relation of the mate-
rial. When the periodicity of the crystal is broken by the presence of defects
or impurities, the electrons are scattered, producing oscillations in the LDOS.
This scattering processes is typically elastic. In this picture, scattering be-
tween states with IEZ and Igf gives rise to a modulation with ¢ = /2;f - /’z:Z in the
LDOS that can be observed in the tunneling conductance with the STM. The
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Fig. 2.13: (a) Topography image at 4.2 K of the sulfur surface in
Co3SnyS,, taken at 100 mV and 1.6 nA. The horizontal scale bar is 13
nm. (b) Conductance maps at -20, -10 and 0 mV. The scale bar in
the image is 13 nm. (c) C3 symmetrized 2D-Fourier Transform of the
conductance maps. The scattering of the electrons at each energy gives
different features in the FFT. Following these changes, we can obtain
information about the band structure of the material. Horizontal scale

bar is 0.3 nm™'.

Fig. 2.14: (a) Adapted from [105]. Constant current STM image of
Cu(1,1,1) at 150 mK. The point-like defects in the surface induce a mod-
ulation of the density of states. In the inset, 2D-Fourier Transform of the
image. The main scattering vector is indicated. (b) Schematic parabolic
band dispersion of Cu(1,1,1) that can be reconstructed from the main
scattering vectors.

scattering between an initial state, ¢, and a final state, f, is described by the
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Fermi golden rule:
: 2m 2 z =
w(i = f) o —= V(@) Ni(Ei, ki) Ny (Ey, ky ), (2.13)

where F; = Ey for elastic scattering, ¢ = l::f - I::Z is the scattering vector, N;
and Ny are the initial and final densities of states, and V(g) the scattering
potential. This scattering potential can be different for different types of im-
purities or defects and can also be anisotropic. We can define the joint density
of states (JDOS) from the momentum-resolved density of states of the sample:

JDOS(E,§) = f N(k,E)N(k + G, E)d*k. (2.14)

For Eq. 2.13 and Eq. 2.14 we can deduce that, in first approximation, the
scattering ¢ vectors connecting states with higher JDOS will produce a higher
QPI signal. The scattering potential can be anisotropic and can enhance or
reduce the scattering intensity at a given q.

Fig. 2.15: (a) Raw 2D-Fourier transform map of the sulfur surface in
Co3SnySe at -15 mV and 1.6 nA. (b) The image is rotated to align the
Bragg peaks with the horizontal position. Then, we symmetrize C3 the
image according to the symmetries of the crystal. (¢) A Gaussian filter
can be applied to improve the features of the image. The horizontal bar

is 1 nm™".

The JDOS depends on the amplitudes of the density of states at initial and
final scattering states and is higher at specific locations of the band structure,
for example, at van Hove anomalies or when scattering occurs between flat
parts of the Fermi surface. Thus, by plotting the maxima in the scattering
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intensity as a function of the bias voltage, we can follow the JDOS for certain
k as a function of the energy. Using this information, we can reconstruct the
electronic dispersion relation (as in figure 2.14). This reconstruction is most
easily obtained in those parts of the band structure that interact with defects
and impurities and provide larger V(q). Furthermore, STM can follow the
band structure of the material for both occupied and empty states, which is
a significant advantage if we compare it with techniques like angle-resolved
photoemission spectroscopy (ARPES), which can only access states below the
Fermi energy.
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Fig. 2.16: Adapted from [106]. (a) Representation of two Fermi arcs
in the k, — k, plane and (b) the corresponding joint density of states
(JDOS).

Noise reduction is essential in QPI measurements when identifying the dif-
ferent vectors. As can be easily understood, JDOS contains all the symmetry
operations of the crystal at its surface. However, V(q) includes additional
components depending on the internal shape of the defects and the way these
interact with the electrons of the compound. Being mostly interested in JDOS,
we can use the symmetry properties of the crystal to enhance the signal to noise
ratio. Figure 2.15 illustrates the symmetrization process for a case of a crys-
tal with 3 fold symmetry. First, we need to correct the small distortion of the
2D-FFT maps, which can be caused due to thermal drift. Then, we rotate
the maps to align one of the crystallographic axes with the horizontal direc-
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tion, and we apply the symmetry averaging operations (figure 2.15 b). As
one would expect, the averaging processes applied will be different for crystals
showing different symmetries. Once the data is symmetrized, we can follow
the different & vectors with the energy to reconstruct the band structure of the
material.

When there are open contours in the surface Fermi surface, such as Fermi
arcs, we have some characteristic features in the QPI maps. Figure 2.16 a
shows two isolated Fermi arcs in the &k, — k, plane. The scattering probability
between the Fermi arcs can be obtained by the 2D autocorrelation. The result-
ing map shows one feature in the center, that comes from the correlation from
the arcs, plus two cross-correlation patterns corresponding to the scattering
between the arcs [106] (see figure 2.16 b). Note in particular that the features
close to k = 0 are not observed for Fermi surfaces having a closed geometry.
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—Chapter 3

Landau quantization in the
topological semimetal WTe,

ECENTLY, WTey has attracted a lot of attention due to its pe-
culiar characteristics. This material is a multiband semimetal,
with a very small density of states near the Fermi level. It ex-

hibits a huge non-saturating magnetoresistance [107|, and it was the first ma-
terial predicted to be a type-II Weyl semimetal [45]. These properties make
WTey an interesting material to measure at high magnetic fields. Other prop-
erties, such as its ultra-high mobility of carriers and layered structure, make
this material a good candidate for measuring the Landau quantization of the
bands near the Fermi level.

Monolayers of WTey have been synthesized with molecular beam epitaxy
[108-112]. Transport devices show indications for an insulating behavior inside
the monolayer and edge states at the borders, at which the quantum spin Hall
effect has been observed [111, 112|. The quantum spin Hall effect arises in
systems with an insulating bulk and helical edge states. The helicity in the
edge states provides counter propagating currents with carriers of different
spin. Application of a magnetic field leads to gap opening and a reduction of
edge conduction [112]. The origin of the gap opened in the single layer limit is
still under debate, with indications for a charge density wave and of a Coulomb
gap [108, 110]. It is thus important to better understand the band structure
of WTes and how it is modified by a magnetic field.
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Here T will present a careful study of the magnetic field dependence of the
band structure of bulk WTes. I will use STM, so that I will probe the surface
properties. Previous work by Francisco Martin Vega [91] has made the most
detailed comparison of the band structure available until now using quasipar-
ticle interference. The comparison with DFT calculations at zero field was
successful. There was however a very puzzling result, namely the apparent ab-
sence of Landau quantization when measuring spatially averaged conductance
curves in a magnetic field. Here I will show that the tunneling conductance
under magnetic fields varies as a function of the position in such a way that
the Landau quantization is averaged to zero when making spatially averaged
measurements. Using the Landau level structure, I will analyze Landau quan-
tization at energies close to the surface states identified previously with quasi-
particle interference. I will show that there is a non-trivial shift of the Landau
level structure that can be related to topological surface states.

3.1 Electronic and topological properties

A non-saturating linear magnetoresistance has been found in the case of
topological semimetals, like Dirac semimetals CdzAss [113], NagBi [114]| and
Weyl semimetals NbP [115], NbAs [116] and TaAs [117]. In WTey, this prop-
erty varies with a quadratic behavior and its value increases a 13,000,000 % at
0.53 K and 60 T, with no sign of saturation. This behavior is probably due to
perfect compensation of carrier densities of electrons and holes [107].

3.1.1 Weyl semimetal

Weyl fermions are massless particles predicted in 1929 [118| that, although
not yet observed among elementary particles, exist as collective excitations in
so-called Weyl semimetals. Similar to Dirac semimetals, in these materials
there is a linear crossing of some bands, forming the Weyl points (WPs). The
massless nature of the Weyl points protects them from gapping (see chapter
1.3, note that in WTey, Weyl points arise as a consequence of the absence of
inversion symmetry in the crystal structure).

Two types of Weyl points have been described. Let us assume for simplicity
that the Fermi level is fixed at the Weyl point. In Type-I1 WPs, the protected
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Fig. 3.1: Adapted from [45]. Schematic representation of Weyl points.
(a) Type-I Weyl point, where the bands crossing is linear and the Fermi
surface is point-like. (b) Type-II Weyl point, where the crossing is oblique
and the Fermi surface is no longer point-like.

band crossing is perpendicular (figure 3.1 a). Electron and hole bands only
overlap at the Weyl points, and the Fermi surface is a closed point-like. Type-
IT WPs exist at the crossing of the oblique conduction and valence bands, and
the Fermi surface is no longer point-like (figure 3.1 b).

WPs always appear in pairs and act as a topological charge. A Fermi surface
enclosing a Weyl point has a well-defined Chern number that corresponds to
the topological charge of the WP. As the topological charge over all the material
must be zero, Weyl points appear in pairs with opposite Chern numbers. They
act one as a source and the other as a sink of the Berry curvature [45]. A non-
trivial Berry phase of 7 is another important characteristic of Weyl semimetals.
A non-zero Berry phase indicates the existence of one of these protected band
crossings [29]. Weyl semimetals have surface Fermi arcs that appear as open
contours in the Fermi surface. The edges of the Fermi arcs are the projections
on the surface of the WPs with opposite chiral charges.

WTes was predicted to have four pairs of Weyl points in the bulk, at 52 meV
and 58 meV above the Fermi level. In figure 3.2 a one pair of Weyl points
are shown. The other three pairs can be obtained by symmetry operations
[45]. WTeq was also predicted to have Fermi arcs on the (001) crystal surface.
Figure 3.2 b shows the spectral density function on this surface. The orange
areas represent the bulk density of states (DOS), while the thin lines are the
surface states. The yellow arrows indicate the two surface states predicted to
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Fig. 3.2: Adapted from [45]. (a) One pair of the four pairs of Weyl
points in WTe,, along the K-K' line. The rest of the Weyl points are
related by symmetries. (b) Calculated spectral density function on (001)
surface. Surface estates are given by the lines connecting the orange
shaded areas, that represent the bulk density of states. Yellow arrows
indicate the surface states near the Fermi level.

be near the Fermi level. WTey has two main energy ranges with surface states.
One below the Fermi level going from about -0.05 to -0.1 meV and another one
from 0.05 meV to about 0.1 meV.

To better understand the formation of Fermi arcs in presence of Weyl points,
it is useful to follow the thought experiment described in ref [45]. In figure
3.3, the evolution of the Fermi surface for a small energy range around the
Weyl points is shown (following Ref. [45]). The electron pocket (solid blue
line) and the hole pocket (dashed magenta line) come in pairs. Weyl points
are represented as red and blue dots and have Chern numbers +1 and -1,
respectively. When the Fermi energy is below 52 meV, both WPs are enclosed
by the same hole pocket, and the total Chern number is zero for all the pockets.
The electron and hole pockets touch at both WPs at 52 meV (figure 3.3 a) and
58 meV (figure 3.3 c). In between, the hole and electron pockets disconnect
(figure 3.3 b) and the hole pockets only encloses one Weyl point, with C' = +1.
In figure 3.3 b, only one hole pocket is shown, but the topology of the other
hole pockets can be obtained by symmetry operations [45]. The Chern number
of the pockets is the same as the WP they enclose. The electron pockets enclose
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Fig. 3.3: Adapted from [45]. Part of the Brillouin zone, showing WP
with Chern number C' = +1 (C = -1) in red (blue). The electron pocket
(blue) and the hole pocket (magenta) come in pairs. (a) At Fr =52 meV,
the electron and hole bands touch at the lower WP. (b) At Ep =55 meV
there is a gap between the electron and hole pockets. The hole pocket
encloses a WP with Chern number +1. The electron pocket encloses
a WP with Chern number -1, but also its mirror image (not shown).
The total Chern number of this pocket is zero. (¢) At Ep = 58 meV
the electron and hole pocket touch again at the other WP. (d) Part of
the Fermi surface for the (001) surface. A Fermi arc is connecting the
electron and hole pocket. Green cross indicates the position of the Weyl
points. The Fermi level is set to be between the WPs.

two Weyl points with different Chern numbers, so the total Chern number
for all electron pockets is zero [45]. Topological surface states appear at the
(001) surface because the WPs are projected to different points. Surface states
connecting electron and hole pockets are shown in figure 3.3 d.

With these interesting properties, much effort has been put into character-
izing the Fermi surface and visualizing topological features of WTey. With
quantum oscillations [119-121|, the Fermi surface has been studied, and evi-
dence of four pockets crossing the Fermi level has been found. ARPES mea-
surements resolved two electrons and two hole bands below the Fermi level,
and a small energy range above the Fermi level is accessible when increasing
the temperature |41, 122, 123]. QPI can measure and characterize the band
structure above and below the Fermi level [124-126], although only partial
characterization of the band structure was done until the study by Ref. [91].
However, evidence of the non-triviality of the bands and surface states is still
incomplete.
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3.1.2 Landau quantization

The application of a strong magnetic field B forces the electrons to move
perpendicular to the direction of the magnetic field and perpendicular to
(k) = 3V E(k), which is itself perpendicular to the surface of constant en-
ergy [4].

k=—%xB. 3.1
X (3.1)

Thus, the electron describes a circular orbit defined by the intersection be-
tween a constant energy cut of the band structure and the plane perpendicular
to the magnetic field. If the electron is not scattered, it makes an orbit in the
period

o h [ dk
= = (3.2)

- )
w. eB v,

where v, is the component of ¥ normal to B at k. By geometry, we have

55 dk_ zmm. (3.3)

v, h
where m is the mass of the electron. The so-called cyclotron frequency is then

eB

m

(3.4)

We =

To obtain the values of the energy, we consider free electrons in the magnetic
field

1 (h € -
— (—,V - —A) Y = F, (3.5)
2m \ 1 c

where A is the vector potential. For a magnetic field applied in the z direction,
we choose the gauge A = B,zy. The movement of the electrons must satisfy
the relation

2 ; 2 2
a_¢+(£_@)w+a_¢+2mE
Ox? dy  he 022 h?

We find that we can separate this equation into motion along the z-axis, which
follows the same energy dispersion relation as for free electrons

W =0. (3.6)

/ h2 2
E' =E-—k2, (3.7)
2m
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and z-y in-plane motion, which gives

(eB hB

h_282u(9€) 1 b E) u(x) _ EIU(ZE) <3.8)

- +
2m  Ox? 2

This equation is equivalent to Schrodinger equation for a 1D harmonic oscil-

lator and a wavefunction u(z). The quantum-mechanical energy eigenvalues
eB
R.
The total energy is the sum of the quantized energy levels in the z-y plane,
plus the translational energy along the direction of the magnetic field

of the orbits are those of a harmonic oscillator with eigenfrequency w. =

1 h2)2
E, = n+g hw, + o (3.9)

From Eq. 3.9 we see that a finite magnetic field induces a quantization
of the continuous parabolic band into discrete states, called Landau levels,
with a separation in energy hw.. The quantization of one band in k, or k, is
represented in figure 3.4 a. In this plane, each Landau level corresponds to one
orbit, as the ones in figure 3.4 b. However, when we look in the k, direction,
the energy levels form a set of parabolas separated by hw., as represented in
figure 3.4 c. If we write the density of states of this set of parabolas, we find

N =

3
2
N(E):r;(i—?) hwczn:[E—Eo—(n+%)hwc] : (3.10)
where Fy is the Fermi energy of the band. The electronic density of states
follows the inverse of a square root function for each level. When F = hw,, the
DOS strongly increases, and then decays as 1/E until reaching the next level,
as represented in figure 3.4 d. As the total DOS when B # 0 needs to remain
the same as in the case with no magnetic field applied, the degeneracy of each
level also increases with the magnetic field.

A Landau level with an energy below the Fermi level is occupied with N
electrons at sufficiently low temperatures. When the external magnetic field
increases, the Landau levels separate in energy and shift to higher energies.
When a level crosses the Fermi energy, the electrons are emptied and occupy
the lower Landau levels. The system reaches the lowest energy each time a
Landau level just crosses the Fermi energy. Then, the energy increases when
increasing the magnetic field until the next Landau level crosses the Fermi
energy. As a result, the energy oscillates with the magnetic field, and so do
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Fig. 3.4: Schematic representation of the quantization of a parabolic
band in an external magnetic field. The green color indicates the occupied
states and the light blue color, the empty states. (a) Representation of a
parabolic band (dark blue line) along k, , direction, when B = 0. When
B # 0, the band quantized in Landau levels, represented by the dotted
lines in green and light-blue. (b) Landau orbits in the plane k,-k,. (c)
Quantization of the band in the k. direction. In this plane, we can see a
set of bands separating in energy. (d) Density of states of the band when
B # 0. The separation in energy between levels is fw.

the properties of the material, such as the electrical conductivity (Shubnikov-
de Haas effect) or the magnetic susceptibility (de Haas-van Alphen effect).
Figure 3.5 represents the separation of the Landau levels while increasing the
magnetic field and a measurement of the quantum oscillations.

Quantum oscillations have been significant in the characterization of the
topology of Fermi surfaces. When the measured property is plotted against
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Fig. 3.5: Schematic representation of quantum oscillations. (a) Rep-
resentation of the Landau levels in the DOS. When the magnetic field
increases, the levels separate in energy and cross the Fermi level. In this
process, the level crossing the Fermi energy empties, and the occupied
levels increase its degeneracy. (b) Representation of the quantum oscil-
lations measured at the Fermi level.

one over the magnetic field, the frequency of the oscillation is proportional to
the extremal (maximum/minimum) area of the Fermi surface in the momentum
space, in the plane perpendicular to the magnetic field. However, the changes
in the Fermi surface with the magnetic field can complicate the determination
of single frequencies in quantum oscillations. Furthermore, the states below
and above the Fermi level are not accessible with this method.

3.1.3 Bulk density of states

As mentioned above, WTey is a semimetal, with a small DOS near the
Fermi level. Bulk band structure calculations predict two hole pockets and
two electron pockets along I'-X direction, with a small overlap at the Fermi
level (see figure 3.6). The electron bands have W-5p character, while the hole
bands have Te-5d character.

The Fermi surface can be experimentally characterized with different tech-
niques, like quantum oscillations. Figure 3.7 a shows quantum oscillations
measurements for WTeq at fields up to 14 T. With this method, two electron
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Fig. 3.6: Adapted from[45]. Diagram of the Brillouin zone of WTe, (left)
and the calculated bulk band structure (right).
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Fig. 3.7: Adapted from [119]. Quantum oscillations in WTe,.(a) Mag-
netoresistance measured at T = 1.8 K, 2.5 K, 4 K, 6 K, 8 K, and 10 K.
(b) Shubnikov-de Haas oscillations after subtracting the background. (c)
Fast Fourier transform (FFT) analysis of quantum oscillations.(d) Tem-
perature dependence of the oscillation amplitude as a function of the
temperature for the frequency, F'*. The black points are the data, and
solid line is the fitting to the Lifshitz—Kosevich formula.



67 Chapter 3. Landau quantization in the topological semimetal W'Tes

(@) \

diidv (a.u.)

1 1 1 1 1 1
-300 -250 -200 -150 -100 -50 -0 50
(b) . Bias (mV)

w

N

di/dVv (a.u.)

[y

-350 -300 -250 -200 -150 -100 -50 -0 50
Bias (mV)

di/av (a.u.)

N W b OO

1 L L L L L L
-350 -300 -250 -200 -150 -100 -50 -0 50
Bias (mV)

Fig. 3.8: Adapted form [127]. Suppression of the Landau Levels by
defects. On the left, STM images of BisSes with Ag impurities (bright
points). On the left, STS spectra of the Landau levels for the different
areas. (a) The LL are well resolved when the coverage of the impurities
is small. When increasing the impurities, the LL smooth (b) until they
disappear for high coverage of impurities (c).

and two hole pockets are found, in agreement with calculations and ARPES
measurements [119]. The effective masses of these bands have been found to
be between m* ~ 0.23 m, and m* ~ 0.28 m, [120].

Using spectroscopy measurements with the STM, we can access the bands
in the range of energy we are measuring, and then we can see the Landau
levels above and below the Fermi level (see section 3.1.2). However, these
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experiments have been mostly made with success in systems with a relatively
simple band structure with a single band crossing the Fermi level, such as
graphene [128]. Furthermore, for the Landau levels to be visible in real space,
the number of defects in the material needs to be very low. For example,
in figure 3.8 we can see how the Landau levels vanish when increasing the
number of defects on the surface on BisSes [127]. A relevant scale is the
magnetic length I = \/h/eB, which is associated with radius of the cyclotron
orbits r,, = v/2n + 1lp. Thus, the average defect distance must be of the order
or larger than /5 in order to resolve the Landau levels in the density of states.
For example, in the case shown in figure 3.8, the Landau quantization vanishes
when the distance between defects is comparable to [g ~ 10 nm at 11 T.

3.2 Atomic structure

WTey belongs to the transition metal dichalcogenides (TMDs). TMDs are
a group of materials with chemical formula MX5, being M a transition metal
atom and X a chalcogen atom (S, Se or Te). These materials often form
a layered crystalline structure, with layers in which the transition metal is
sandwiched between two chalcogens. Each Te-W-Te layer is separated by a
van der Waals gap along the ¢ direction of the crystal structure. We can see
the atomic structure of WTey in figure 3.9 a.

In WTes the W atoms form zigzag chains along the a-axis. As the distance
between W atoms is significantly smaller along the a-axis than along the b or
c-axes, the material exhibits rather one-dimensional electronic properties, as
we shall see below. WTes lattice parameters are a = 3.477 A, b = 6.249 A
and ¢ = 14.018 A, and its unit cell is indicated with a dotted black rectangle
in figure 3.9 a and b. WTey crystallizes in an orthorhombic structure with
space group Pmn2; [129]. This space group is noncentrosymmetric, which is a
requirement for the existence of Weyl fermions in a nonmagnetic system [45]
(see chapter 1.3).

We measured WTe, single crystals from the group of Prof. Paul C. Canfield.
They were grown from a Te-rich binary melt following the procedure described
in references [130, 131]. The crystals were plate-like with typical dimensions
of 2 mm x 0.1 mm x 0.01 mm, with the crystallographic c-axis perpendicular
to the larger crystal surface. The samples were cleaved in situ in cryogenic
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Fig. 3.9: Side view (a) and top view (b) of the atomic structure of WTes.
W atoms are in purple and Te atoms are in green. The dotted black
rectangle indicates the unit cell. Dotted lines in (a) indicate cleaving
planes. (c) STM topographic image with atomic resolution at 14 T and
4.2 K. Image taken at 100 mV and 4 nA. The horizontal scale bar is 2
nm long. Fourier transform is shown in the bottom insert, where the
horizontal scale bar is 3 nm™ long. In the top inset, high-resolution
STM topography where both rows of Te atoms are perfectly resolved.
The horizontal scale bar is 5 A long. (d) Spatially average normalized
conductance curves at different magnetic fields. Calculated DOS is plot
in black. Curves are shifted for clarity. Calculations by Masayuki Ochi
and Ryotaro Arita.

conditions, as described in the previous chapter. This cleaving process allows
us to obtain very flat and clean surfaces of Te atoms. In topography images,
we can see the Te atoms forming chains along the a-axis, which is also the
orientation of the underlying W zigzag chains. This pattern remains constant
under the variation of magnetic fields up to 14 T, meaning that there are no
substantial modifications of the electronic structure with magnetic fields (the
topography pattern shows the pattern of the tunneling current, which is the
integral of the density of states from zero up to the bias voltage, see chapter
2.2.1). A topography image at 14 T and 4.2 K is shown in figure 3.9 c. Using
topographies with atomic resolution in large areas, we can estimate the number
of defects in the material 1.3 x 102 cm~2 |91], which is very small. This means
that the electron can move along ~ 350 unit cells without finding any defects,
and the mean free path can be estimated as [ ~ 170 nm. As the Landau orbits
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at 14 T are of the order of ro # I[p ~# 7 nm and [p < [, this material is a good
candidate for measuring Landau levels.

As mentioned before, this material is a semimetal with a small DOS at the
Fermi level. In figure 3.9 d, we plot the tunneling conductance averaged over a
full field of view. This DOS is larger below the Fermi level and reaches almost
zero at the Fermi level, as expected from DFT calculations and in agreement
with previous measurements [91, 126, 132]. When measuring at high magnetic
fields, the shape of the curve remains without change. Let us remind that
the magnetoresistance of WTey is of about 400,000 % at 4.5 K and 14.7 T
[107]. Our measurements show that the band structure remains essentially
unchanged close to the Fermi level when increasing the magnetic field. Thus,
we show that the extreme magnetoresistance is not a consequence of changes
in the band structure. This is in line with the explanation suggested in Ref.
[107], in which the magnetoresistance is due to electron-hole compensation.

3.3 Spectroscopy at high magnetic fields

3.3.1 Landau Levels

Although this material is an excellent candidate to observe Landau quanti-
zation, the tunneling conductance under magnetic field presents no signature
of Landau level formation (figure 3.9 d). Note that these curves have been
obtained after averaging over many different sites. To better understand this
point, we first focused on finding, using the low temperature in-situ position-
ing mechanism described in Refs. [92, 104], fields of view which were far from
defects and consisted mostly of defect-free areas. Furthermore, we analyzed
curves taken at precise positions defined at atomic scale, not curves averaged
over a certain field of view. As we can see in figure 3.10, we could observe
Landau quantization clearly in the tunneling conductance. Curves are shifted
for clarity and its background has been removed (background accounts for the
bias voltage dependence of the tunneling conductance, shown in figure 3.9 d).
The amplitude of the Landau levels increases with the magnetic field as it is
expected (inset of figure 3.10).
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Fig. 3.10: Conductance curves at 11 T, 12 T and 14 T at one point in
the sample. The background has been removed and curves are shifted for
clarity. In the inset, FFT amplitude (black) and the energy separation
between levels (red). Dashed red line indicates the calculated energy
between levels with a mass of m* = 0.22 m,.

From the Fourier transform we obtain a single peak, that corresponds to
the separation in energy between consecutive Landau levels AE. Using Eq.
3.4 we obtain an effective mass m* ~ 0.22m,. In the inset of figure 3.10 we
represent as crosses the AFE found at each magnetic field. The calculated AE
for m* = 0.22mee is shown as a red dashed line. The m* obtained is very
close to the values for the effective masses obtained from quantum oscillations
(between m* ~ 0.23m, and m* ~ 0.28m, in Ref [120]).

We should note that, as all the bands have very similar values of m*, en-
ergy difference between Landau levels does not change significantly in different
bands. For example, at 14 T, a difference in the mass of 0.04 m, results in a
separation between levels of only 1.2 meV. Note that such values are also of the
order of the Zeeman splitting. We find a Zeeman splitting of approximately
1.6 mV at 14 T (Ez = pupgrJB, where pp is the Bohr magneton, gy is the
Landé g-factor, J = S + L is the total angular momentum). For smaller fields,
the difference is even smaller. Furthermore, levels are broad, with peaks being
about 5 meV large. Thus, we see that level broadening is of the same order as
differences in band mass.
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3.3.2 Landau levels with atomic resolution
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Fig. 3.11: Schematic representation of the quantization of two parabolic
bands with different Fermi energy. (a) Parabolic electron band (purple)
and hole band (green). The continuous lines represent the bands at B = 0.
When B # 0, both bands are quantized in Landau levels. (b) Electronic
density of states of each band when B # 0.

Let us now try to understand how the Landau level structure is washed out
in spatially averaged measurements. Figure 3.11 a schematically illustrates
the situation when we have several bands. One electron band (green) and one
hole band (purple) with the same effective mass are quantized when applying
a magnetic field. The electronic DOS can be obtained by applying Eq. 3.10
for each band. Hence, the final N(F) is the superposition of Landau levels for
both of them (figure 3.11 b). As the bottom and top of the bands are different,
the levels are located at different positions in energy. Small changes in the top
or bottom of the bands produce considerable changes in the level scheme.
Contrary to the dispersion in values of the effective mass, the difference in the
position of the bands can be of the order of the level broadening or larger.

As we have seen above, when taking atomically resolved tunneling conduc-
tance curves, we observe Landau oscillations, but these are absent in spatially
averaged tunneling conductance curves. This suggests that the contribution
of a certain set of bands to the tunneling conductance slightly changes as a
function of the atomic position.
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To account for the contribution of different bands to the spatial changes in
the tunneling conductance, we can add an oscillatory term to the DOS Eq.
3.10. We probe at a single position a given band structure, and the probed
band structure changes at the next position.

1

3
N(E,r) = ! (2;'; ) hwe Y [E Ey - (n+ 2) hw, + Acos(qa:)] -

' (3.11)
where A is the amplitude of the oscillatory term, ¢ indicates the periodicity of
the oscillation, and x is the distance. This oscillatory term only modifies the
top and bottom of the band periodically, changing the position of the Landau
levels in energy without modifying their energy separation AE = hAw.
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Fig. 3.12: Experimental (top) and calculated (bottom) conductance
maps for a profile on top of Te atoms at 14T. The position of the atoms
are indicated with the topography on the left. The map was calculated
using the Eq. 3.11 with parameters A — 4.2 mV and ¢ — 2 mwa, and using
the experimental parameters of number of points and the obtain Aw,. at
14 T.
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Using Eq. 3.11, we can simulate patterns of the density of states. We use A
= 4.2 mV and ¢ = 27a, where a is the unit cell parameter in the direction of the
Te chains. Note that A is larger than Aw,./2. Thus, the pattern is not a simple
cosine wave. Instead, it is an intricate set of maxima and minima. Figure
3.12 shows the comparison between a profile along one of the Te chains at 14
T and a simulation of Eq. 3.11. The simulation was made with an effective
mass m* = 0.22m, at 14 T. The average curve of the STS measurement was
added to Eq. 3.11 to obtain the background.

Thus, we see that when we scan the surface of the sample, we are tunneling
into different atomic positions. Depending on the atomic position, a certain
contribution to the tunneling conductance from different parts of the band
structure is dominating. From the analysis made here we can understand
that the structure of the bands contributing at each atomic position to the
tunneling current is slightly different. The overall behavior is well reproduced
by Eq. 3.11, as shown in figure 3.12. For example, let us consider the two
Te derived hole bands close to the I point. When tunneling on top of a Te
atom or in between, we can expect a different tunneling wavefunction overlap
between tip and sample. This can be parametrized into a different tunneling
matrix element, when there is just a single band and gives just a prefactor
to the tunneling current. But in a system with two close-lying bands, the
wavefunction overlap does not need to be the same everywhere on atomically
resolved positions. We can see this by taking a Nlocal(E) composed of different
portions of the band structure, whose relative weight changes depending on the
atomic position. The same effect should be more pronounced when taking into
account the W-derived electron bands and the Te-derived hole bands (figure
3.11).

3.3.3 Surface states in Landau level spectroscopy

Previous QPI measurements [91] demonstrate two surface states in WTes.
Figure 3.13 a shows bulk bandstructure DFT calculations in the I' — X high
symmetry line, in the range of energies we are measuring. Electron bands
have W-5d character and are represented in purple. Hole bands have Te-5p
character and are represented in green. Surface calculations predict two arc-
like surface states, at =50 mV and +75 mV (see figure 3.2) [91]. In figure
3.13 b and c, the calculated spectral density maps are represented for both
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energies (calculations by Masayuki Ochi and Ryotaro Arita). Surface states
are indicated with yellow arrows. The autocorrelation of the isolated Fermi
arcs are represented in figure 3.13 d and e (see chapter 2.4.1).
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Fig. 3.13: Adapted from [91]. (a) Calculated bulk density of states in
I' - X direction by Masayuki Ochi and Ryotaro Arita. Purple and green
color of the bands indicates the orbital character of each of them: electron
bands have a predominant W-5d character, while hole bands have Te-5p
character. (b) and (c) are the calculated spectral density function on
(001) surface at +75 mV and —50 mV. Yellow arrows mark the surface
states. (d) and (e) JDOS associated with the surface state in (b) and
(c), respectively.

Evidence of these two surface states can be found when looking at the ampli-
tude of the Landau levels in the conductance curves taken at certain positions.
In particular, we can expect enhanced Landau oscillations when surface states
contribute to the tunneling conductance, due to the increased contribution of
two-dimensional surface states to the density of states measured by STM. For
the conductance curves taken on top of the Te atoms (green arrow in figure
3.14 a), the amplitude of the oscillations increases at energies below —50 mV.
Figure 3.14 b shows the curves taken on top of four consecutive Te atoms.
The gray shadow indicates the energy range where we observe an enhanced
tunneling conductance. For the curves in between the Te atoms (purple ar-
row in figure 3.14 a), the conductance curves show a similar enhancement for
energies below —50 mV, but also above +75 mV. This increase in the signal
intensity can be related to the presence of surface states below -50 mV and
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Fig. 3.14: (a) High resolution atomic topography with the position of
the atoms indicated. Purple and green arrows indicate the first position
where the conductance curves for (b) and (¢) are taken, respectively. (b)
Conductance curves taken on top of four W atoms. (c¢) Conductance
curves taken on top of Te atoms. The gray shadow indicate the energy
ranges where the conductance is enhanced.

above 75 mV, as also found in the calculations presented in figure 3.13. Figure
3.14 c shows curves taken in between Te atoms for four consecutive Te posi-
tions. As the surface states around —50 mV connect one electron and one hole
band, each with a different orbital character, it can be resolved for both atomic
positions. However, the surface state above +75 mV has only W-5d character.
Hence, it can only be resolved in the positions where the W atoms lay below
the surface. This supports the description made above, in which atomically
different positions contribute differently to the tunneling conductance.

3.3.4 Phase accumulation in Landau levels

To see if there are any deviations in the position of the Landau levels close
to the surface state energies, we take one conductance curve (figure 3.15 a)
and assign arbitrary values of the LL index n, starting at +100 mV. We plot
the position of this value versus the position of the level in energy as dots in
the inset in figure 3.15 a. It is easy to see from Eq. 3.9 that the result for one
band should be a straight line. The resulting curve is indeed very close to a
straight line. However, there is a tiny but relevant change. The line obtained
taking the points at large negative and positive bias voltages have the same
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Fig. 3.15: (a) Conductance curve at 14 T. In the inset, Landau index as
a function of the voltage. Points near 100 mV have been fit to the blue
line, and points near -100 mV, to the red line. (b) Difference between
the red line and the Landau index from the inset in (a). Red dashed line
indicates the result using a model in (c-e) (see main text). (c) Schematic
representation of the Landau level quantization of two bands with Dirac
dispersion. (d) Total density of states of the two bands. (e) Broadening
of the levels due to the resolution.

slope but are shifted with respect to each other (red and blue lines). The shift
is of 6 = % in n. This means that, at some point along the line, there is a
difference between levels of %n This behavior is the same for different atomic
positions in figure 3.12. When the fitted line is subtracted to the experimental
data, we find the energy variation of the Landau level index shown in figure
3.15 b. When the magnetic field is reduced, the Landau levels approach in
energy and more levels are measured in the same energy range. Then, the
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linear dispersion is harder to differentiate from the quadratic dispersion and it
is more difficult to examine the difference from the experimental data.

To better understand the Landau level structure, let us consider the situ-
ation depicted in figure 3.15 c. Here, we represent two bands quantized by
the influence of the magnetic field. These bands disperse linearly in the plane
kg —ky. Thus, when we represent the sub-bands in k., the separation between
them follows the Dirac quantization

E, = Ey +/2ehv%|n|B, (3.12)

where vp is the Fermi velocity. These two bands contribute with peaks to the
total density of states N(F), and the levels mix in the energy range where the
two bands superpose (see figure 3.15 d). The resolution of the experiment can
lead to the level broadening, giving a single peak for the levels that are near in
energy. A broadening of ~ 5 mV is represented in figure 3.15 e. Analog to the
experiment, we can represent the Landau level position as a function of the
energy, obtaining a similar result that in the experimental data. The Landau
levels from this model can also be fitted to two straight lines with the same
slope, but whose difference in position is ~ %n With this model and using
the experimental parameters, we obtain the dashed red line depicted in figure
3.15 b when one of the lines is subtracted.

For the model above, we supposed that the band disperses linearly in the
ky — ky plane. But let us discuss the quantization of two parabolic bands with
the same m* (see figure 3.16) and see if it is possible to obtain a change in
the Landau level sequence. The total DOS is described by the equation

gl

(3.13)

N =
N =

Ne(B) oo 3 [ (8- B1) = (n+ 5 e |

n

where E; and Fs are the top and bottom of the bands. Having the distribution
of Landau levels in figure 3.16 would mean that the top and bottom of the
bands are related as

E1 = Fs £ nhw,. (3.14)

It can be seen in the DOS resulting from these bands (figure 3.16 b) that
the result of this configuration would be a straight line when representing
n vs energy. However, this is not what we observe. Alternatively, the Eq.
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Fig. 3.16: (a) Adapted form [45]. Electron and hole bands, quantized
by the presence of a magnetic field B # 0. We represent a situation in
which positions of top and bottom of bands are aligned. This leads, of
course, to alignment of the Landau levels too. (b) Density of states of
the two bands, where n = 1,2, ... are the arbitrary count of the levels,
analog to the counting made in figure 3.10 a. The top and bottom of
the bands are related by the Eq. 3.14.

3.14 might not be fulfilled, in which case, the Landau level sequence is not
linear. However, this would also imply that Landau level smearing (figure
3.11) eliminates the difference.

3.4 Conclusion

In summary, we performed high resolution topography images on atomi-
cally flat surfaces, measuring the Te chains. This pattern remains the same
with the magnetic field, indicating no significant modifications in the band
structure. In agreement with the topography images, the spatially averaged
DOS remains very similar at high magnetic fields, demonstrating that the huge
magnetoresistance in the material is not a consequence of a variation in the
band structure. Although WTes gathers lots of conditions favorable to Lan-
dau levels to be measurable (2D layered structure, a small density of defects,
small effective mass,...), no oscillations were found in the spatially averaged
tunneling conductance curves.



3.4. Conclusion 80

We performed very high resolution spectroscopy maps at high magnetic
fields to find the Landau levels. Doing so, we resolve Landau quantization of
the density of states under magnetic field with associated effective mass m*
= 0.22 m,. Following the conductance curves along the Te chains, a change
in the position of the Landau levels is visible. We can reproduce the distance
dependence by parametrizing the Landau level DOS as a function of the atomic
position, evidencing a new form of atomic size quantum oscillations. This can
now be applied to many other systems showing multiple bands crossing the
Fermi level.

By representing the conductance curves on top of the Te atoms and between
them (corresponding to the positions of the W below the surface), we found
evidence of the surface states previously found with QPI measurements. An
enhancement of the amplitude of the oscillations below —50 meV is observed
for both positions. The surface state at this energy connects both the elec-
tron (with W-5d character) and hole bands (with Te-5p character). Similarly,
an enhancement is found above 75 meV, for a surface state connecting the
electrons bands.

Equipped with the knowledge that we can observe Landau quantization by
taking a look on atomically defined conductance curves, we have analyzed the
Landau level structure and unveiled a significant modification when changing
the bias voltage. We show that this implies a change in the Landau level struc-
ture due to a non-parabolic band dispersion in the studied energy range. Thus,
we have shown that the surface states unveiled in Ref [91] are probably topo-
logically non-trivial and lead to a Landau quantization scheme characteristic
of a linear dispersion.



—Chapter 4

Kagome lattice induced end
states in one dimensional
atomic chains

ATERIALS with flat bands have emerged as novel materials to
study electronic correlations, magnetism and topological proper-
ties [133-137|. Defects excitation such as vacancies or adatoms

can reveal new physical properties on this kind of materials [138-140)].

In this chapter, I present measurements on the magnetic Weyl semimetal
Co3SnaSe. We used high resolution topographies to characterize the surface,
finding signatures of a flat band on the S layer [141]. Sn atoms on the empty
triangles of the kagome lattice produce a modification of the magnetic order.
We found end states on Sn chains related to the flat-band breaking.

4.1 Band structure in the kagome lattice

A non-trivial band structure can be created by proper design of the lattice
structures. For example, Dirac bands with linear dispersion can be created
in the honeycomb lattice [142, 143|. In contrast with this linear Dirac band
hosting massless particles, specific atomic configurations produce a destructive
quantum phase interference of Bloch wave functions, leading to electronic con-
finement and flat bands [144]. Several lattices have been proposed to generate
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flat bands, such as twisted bilayer graphene [143, 145, 146, kagome [147-151],
side centered square [152], checkerboard [153], Lieb lattice [154] or Dice lattice
[155].
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Fig. 4.1: (a) Atomic structure of a kagome lattice. Plus and minus signs
indicate the phase of the eigenstate at neighboring sublattices. Colored
green hexagon indicates the electron confinement in the lattice. Any
hoppings outside the hexagon (indicated with black arrows) are cancelled
by destructive quantum interferences. (b) Inequivalent atomic positions
in the kagome unit cell (gray hexagon) are indicated with different colors.
G123 are the shortest lattice vectors. (c) Brillouin zone of the kagome
lattice. (d) Tight-binding band structure of kagome lattice featuring
flat band (solid green line) and two Dirac bands with linear crossing at
K (solid black lines). Inclusion of spin—orbit coupling gaps both Dirac
crossing and quadratic touching between the flat band and the Dirac
bands (dotted lines).

In the simplest nearest-neighbor electronic hopping model, the tight-binding
Hamiltonian can be written as

Hy =~ Z c;-rcj + h.c. (4.1)

(i)
where 4, j denote the sites of the kagome lattice, (ij) denotes nearest-neighbor
pairs of sites, the operators ci(c;r) annihilate (create) a fermion on site i and ¢ is

the hopping parameter. The kagome lattice is composed of interlaced triangles
where each lattice point interconnects two neighboring hexagons, as shown in
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figure 4.1 a. One can construct real-space eigenfunctions with alternating
phases at the neighboring corners of the hexagon. This electronic state is
geometrically confined within the single hexagon since the destructive phase
interference hinders any hopping from neighboring cells. Electronic states are
geometrically confined within a single hexagon (color hexagon in figure 4.1 a)
since any hopping from neighboring cells is cancelled by the destructive phase
interference. This real-space electronic localization leads to the formation of
eigenfunctions with no energy dispersion in the momentum space, namely flat

bands.

The three inequivalent atomic positions are indicated with the colors green,
red and blue in each unit cell (gray hexagon) in figure 4.1 b. When resolving
Eq. 4.1 [151, 156, 157|, the resulting band structure consists of one non-
dispersive band

co(q) = 2t, (4.2)

and two dispersive bands

ei:—t<1:l:\/3+2A((j)), (4.3)

with
A(q) = cos(G-ay) + cos(G-as) + cos(q-ag). (4.4)

The vectors aq23 are the shortest lattice vectors for the kagome lattice and
are indicated in figure 4.1 b. Its values are

3
a] =2, ag = ——T + g@, (45)

V3.
5 ¥

1.
ag=——=2 —
3779

N | —

Figure 4.1 d shows the band dispersion when resolving the Hamiltonian of
Eq. 4.1. The non-dispersive band, ¢, is depicted in green. The two dispersive
bands, €., cross in K, forming a Dirac point. These two bands touch the flat
band at I' (solid lines), although this touching point and the Dirac point gap
when including the spin-orbit coupling (dotted lines) and the bands become
topologically non-trivial [153, 158, 159].

Systems with flat bands produce unconventional phenomena, such as the
presence of the fractional quantum Hall effect in the absence of a magnetic field
[160-162], and can host electronic states including ferromagnetism [152], su-
perconductivity [163] and Wigner crystallization [164]. Several materials with
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kagome lattices and different properties have been measured, like non-magnetic
CoSn [165], the superconducting family AV3Sbs [163] or the ferromagnetic and
Weyl semimetal CozSnsSs. This later material presents exceptional topolog-
ical properties due to its Co kagome lattice interplay with nontrivial surface
band and has been object of the research work presented in this chapter.

4.2 Phase diagram

CosSngSs is a ferromagnet below a Curie temperature T ~ 175 K. The
temperature dependence of the magnetization and the susceptibility are shown
in figure 4.2 a and b. Above T, Co3SnsSo presents a Curie-Weiss behavior,
following;:

e
T T-0p

X (4.6)
where C' is the Curie constant and ©p is the Weiss temperature. An effective
magnetic moment ~ 0.96u 5 per Co has been found in Ref. [166]|. Furthermore,
we see that the magnetization is anisotropic (figure 4.2 a). Ferromagnetic
behavior is found when the field is applied along the c-axis.
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Fig. 4.2: Adapted from [166]. (a) Magnetization as a function of the
temperature. (b) Inverse magnetic susceptibility as a function of the
temperature. In the inset, a picture of a Co3zSnsyS, single crystal on a
millimeter grid is shown. (c¢) Adapted from [134]. Temperature depen-
dence of the longitudinal electric resistivity p in zero-field and at 9 T.

This transition can also be seen in the resistivity (figure 4.2 ¢), where a
kink is visible at T when measured at 0 T.
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4.3 Atomic and band structure

Co3SnaS9 has a layered crystal structure. It belongs to the space group
R3m with lattice parameters a = b = 5.373 A and ¢ = 13.178 A. Its structure
consists of a CoszSn layer sandwiched between two S layers, as shown in figure
4.3. These three layers are at the same time sandwiched between Sn layers.
Cobalt atoms in the Co3Sn layer form a kagome lattice with a Sn atom in the
middle of the hexagons. The S and Sn atomic layers form a hexagonal lattice
with the same lattice parameter (figure 4.3). The solid black line in figure 4.3
indicates the unit cell. The dashed lines mark the different planes and their
distance with the bottom of the unit cell is indicated. In this material, the
magnetic properties arise from the cobalt planes, whose magnetic moments
align ferromagnetically out of plain below T ~ 175 K, as indicated by the
arrows in figure 4.3.
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Fig. 4.3: Side view of Co3Sn,S, atomic structure. Solid black rectangle
indicates the unit cell. Dashed lines show the different planes, where the
distance from the bottom of the unit cell is indicated in units of ¢. The
Co atoms form a kagome lattice with a Sn atom at the middle of the
hexagon, forming a CozSn layer. The S and Sn atom form hexagonal
lattices with the same atomic distance.
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Near the Fermi level, the main contribution to the bands is from the 3d Co
orbitals. The calculated band structure provides spin polarized bands when
the spin orbit coupling (SOC) is not included (figure 4.4 a). In this case, all
the bands crossing the Fermi level are polarized with spin up (in blue in figure
4.4 a), while the bands polarized with spin down for a gap of ~ 0.4 V (in green)
[134, 167]. Without SOC, there is band inversion at the L point between the
valence and conduction bands (figure 4.4 a). They form a nodal ring that is
protected by the mirror symmetry in the (010) plane. The nodal line joins the
crossing points along the U—L and L—-TI" directions, marked with the red circles
in figure 4.4 a. When the SOC is included in the calculations, the nodal line
opens in all the directions of the Brillouin zone except at the Weyl points [134,
167]. Three pairs of Weyl points are formed by the opening of the nodal lines
[168] related by the C5 rotation and inversion symmetry. The Weyl points are
shown in purple and red in the Brillouin zone in figure 4.4 b, where the color
difference indicates opposite chirality. Note that the Weyl points do not appear
in the high symmetry directions of the Brillouin zone. The Fermi surface at
the (001) surface and the projection of the Weyl points is also shown, where
two extra Weyl point outside from the first Brillouin zone are also depicted.
Surface states connecting the Weyl points have been measured at this surface
[44].

The surface band structure shows a nearly flat band (figure 4.4 c) with
an electron-like bottom close to the zone center. When the SOC is included,
further hybridization between the two bands opens a small gap (figure 4.4 d)
[141]. Although the band structure in Ref. [141] has been calculated using
first principles calculations, the flat band has also been obtained using a first
neighbors tight-binding model (see section 4.1 and Ref. [141]). Under the
influence of the magnetic field, this flat band has been shown to shift in an
opposite direction as expected for the bulk bands [141].

In this thesis, we measured Co3zSnsSo single crystals grown by the group of
Prof. Paul C. Canfield. They were grown from a ternary melt following the
procedure in [166]. The samples were plate-like with the c-axis perpendicular
to the largest crystal surface (see picture in figure 4.2). The samples were
cleaved in-situ in cryogenic conditions in the a-b plane. We performed scanning
tunneling measurements at 4.2 K and magnetic fields up to 14 T using the
experimental setup described in chapter 2.
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Fig. 4.4: (a) Adapted from [167]|. First principles calculated band struc-
ture without the spin-orbit coupling and with SOC. Colors indicate the
polarization of the bands. Red circles mark the crossing points of the
nodal line. Dotted black line include the SOC. (b) Adapted from [44].
Brillouin zone and the projection on the (001) surface. The Weyl points
are depicted in purple and red, indicating opposite chirality. (c¢) and (d)
Adapted from [141]. First principles calculation surface band structure
using in the I' = K direction without SOC (c¢) and with SOC (d).

4.4 Surface characterization

We present several fields of view found over the surface in figures 4.5, 4.6,
4.7 and 4.8. Note first that the structure of Co3SnoSs is relatively simple, there
are always hexagons on the surface. There are three possible terminations, all
providing a hexagonal surface. One of Sn, one of S and another one combined
Co-Sn.



4.4. Surface characterization 88

In figures 4.5 and 4.6 we find surfaces with very different tunneling conduc-
tance(figures 4.5 ¢ and 4.6 c). The height histograms (insets of figures 4.5
a and 4.6 a) provide in both cases step sizes of 1/3 the c-axis unit cell. The
lattice parameter is identical in both surfaces. These conditions are met by
the three different possibilities mentioned before.

£103)

Counts|
i)

-50 0 50
Bias voltaje (mV)

Fig. 4.5: (a) STM topographic image of Sn steps. Horizontal scale bar is
15 nm long. Inset shows the height histogram of the image, where we can
see the steps are separated ¢/3. Red lines indicate the c¢/3 separation.
(b) High resolution atomic topographic image at 100 mV and 1.2 nA in
these steps. Horizontal scale bar is 1.5 nm. Inset on the right shows the
FFT. Horizontal scale bar is 2 nm™. (¢) Normalized conductance curves
are taken at different steps and are shifted vertically for clarity.

Exposing the Co3Sn surface requires breaking the Co-S bonds. This has
been considered as highly unlikely [44, 141, 169], because of the large difference
between the bond energy of Co-S and of S-Sn (the latter being much smaller).
Thus, the observed surfaces are likely Sn or S surfaces.

Now let us consider the images shown in figures 4.7 and 4.8. In figure 4.7
we see a large field of view, in which there is a clear gradient in the density
of atoms that have been left on top of a full layer. In figure 4.8 we see that
such atoms can form, with enough density, triangular structures and cover
the whole surface. From the height histogram in the inset of figure 4.7 a we
obtain that the height difference obtained after covering the surface is of 1/15
the c-axis unit cell. The covered surface is equivalent to the surface shown in
figure 4.6 b and the atomic layer covering the said surface equivalent to figure
4.5 b, from the tunneling conductance curves obtained at each place.
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Fig. 4.6: (a) STM topographic image of S steps. Horizontal scale bar is
40 nm long. Inset shows the height histogram of the image, where we can
see the steps are separated ¢/3. (b) High resolution atomic topographic
image at 100 mV and 1.2 nA in these steps. Horizontal scale bar is 1.5
nm. Inset on the right shows the FFT. Horizontal scale bar is 2 nm™.
(c) Normalized conductance curves are taken at different steps. Curves

are shifted vertically for clarity.
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Fig. 4.7: (a) High resolution atomic topographic image, with 100 mV
bias voltage and 3.2 nA set point. In this image, the transition between
consecutive layers can be seen. Horizontal scale bar is 10 nm long. In
the inset, height histogram of the image fitted with two GGaussian curves
separated c¢/15. (b) Side view of the crystal structure when the sample is
cleaved and the two possible surfaces are visible. (¢) Normalized density
of states of both surfaces.
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Fig. 4.8: Atomic resolution topographic images at taken using 100 mV
bias voltage and 3.2 nA set point. Two different surfaces are visible with
different coverage of the top layer. Horizontal scale bar in all the images
is 6 nm. Both surfaces are hexagonal with the same lattice parameter,
as we can see in the Fourier transform maps, where white circles indicate
the Bragg peaks. Horizontal scale bar in all the FFT images is 1.5 nm ™.

Thus, the two surfaces we observe can only be either S or Sn on the S-Sn
atomic layers that separate Co3Sn-S groups. This confirms the strong bond
between Co3Sn-S and shows that the light S-Sn bonds can be used to obtain
surfaces covered arbitrarily just by searching for different fields of view on the
sample. But how can we separate S from Sn?

To do so, we have to consider the possible situation of each layer. If we are
looking on a S layer belonging to the Co3zSn-S groups, we should likely observe
features of the kagome flat band in the tunneling conductance. A Sn layer not
belonging to the CoszSn layers is unlikely presenting such features, as it lies
one atomic layer above the CozSn-S groups. We see from figure 4.7 ¢ that
the top partially filled atomic layer presents no flat band features, whereas
the bottom layer presents a clear peak at the same energy at which the flat
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band is observed (~ -10 mV) (see figure 4.4 d) [141]. Furthermore, the bottom
layer provides a neat hexagonal shape, which is compatible with the atomic
surrounding of S atoms belonging to the Co3Sn-S groups.

Thus, in figure 4.5 we are observing a Sn layer and in figure 4.6 we observe a
S layer of atoms belonging to the Co3Sn-S groups. This assignment of surfaces
is in agreement with ab initio calculations of the bonding strength and on the
assignments made in Refs. [141, 170].

At the same time, we see that we can obtain images with very different
Sn coverages. From isolated single atoms up to full layers, passing through
situations in which we find Sn chains. Since the S and Sn layers have atomic
distances that are very close, their bonding can compete with the in-plane
Sn-Sn bonds [141].

We now turn our attention to the behavior around Sn atoms on top of the
S surface belonging to the Co3Sn-S groups.
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Fig. 4.9: (a) Top view of the atomic structure of the CosSn (magenta
and gray) and S (yellow) layers, with a Sn atom from the layer on top.
(b) Very high atomic resolution image with the atomic lattice on top.

To this end, let us analyze the atomic position of isolated Sn atoms. In figure
4.9 we show a Sn atom and compare atomic positions (figure 4.9 a) with the
structure observed at the surface (figure 4.9 b). Note that Sn atoms are located
on top of the triangles of the Co kagome lattice, not at the hexagons. The Sn
lying on the same layer as the Co is located within the hexagon. The Sn can
be located on three possible triangles, as the other triangles are occupied by
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S. This builds up the corresponding hexagonal Sn lattice, intertwined with a S
lattice of the same lattice constant. A single atomic Sn on top of the S lattice
thus has a characteristic triangular shape, indicative of the triangular atomic
surroundings of Sn (figure 4.9 a). As the Sn lattice has hexagonal symmetry,
it is filled along lines with kinks of 60 degree each.

4.5 Sn on top of the S surface

4.5.1 Isolated Sn atoms

An impurity provides a different electron count than the atomic constituents
of a solid. This leads to a positive or negative charge located at the impurity
site and often to atomic size changes in the electronic density. Similar ef-
fects can happen on atoms located as an additional atom on top of a flat
surface. The modified charge density is screened in metals by the conduction
electrons, as discussed in chapter 1. Screening occurs in the bulk as well as
at the surface. Generally, screening is much less efficient in semiconductors,
and an impurity level might be found within the gap between valence and con-
duction bands. In a metal, screening is efficient both in the bulk and at the
surface. At the surface, two-dimensional electronic states are built within the
gaps of the bulk energy dispersion relation. Charge at the impurities can be
efficiently screened by the two-dimensional surface electrons, as well as by bulk
electrons. CozSnaSe presents several surface states within bulk band gaps [44].
The consequence of screening far from the impurity site, due to the nature of
the Lindhard function, is the appearance of oscillations at a wavevector kg of
the surface states (chapter 2.4.1). These oscillations have been observed and
studied in detail in Ref. [44] and are mostly due to defects within each of the
possible atomic termination layers. Here however we focus on the Sn atoms
located on top of the S surface. As we shall see below, the charge screening
around these atoms is very interesting. It has been shown that screening con-
siderably modifies the local band structure, for instance in presence of a flat
band in graphene [171] or on impurities located on top of black phosphorus
[172]. It is thus of interest to analyze in detail the shape of the charge dis-
tribution around Sn atoms on top of the S surfaces belonging to the Co3zSn-S
groups, in which Co forms a kagome lattice.
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Fig. 4.10: Sn defects on the S layer. Topographic images of an area of
30 x 30 nm measured at 100 mV and 3.2 nA at (a) 0T and (b) 14 T.
Conductance maps and their C3 symmetryzed Fourier Transform maps
for different energies at 0T (¢) and 14 T (d). All horizontal scale bars
are b nm long. Black hexagon in the FFT maps indicates the Brillouin
zone. (e) Bias voltage vs real space size of the hexagons indicated with
the black arrow in the FFT maps.

We focus now on large surfaces full of isolated atoms on the surface at zero
magnetic field (figure 4.10 a and c¢) and at 14 T (figure 4.10 b and d). We
see in the topographies (figure 4.10 a and b) that, in both cases, the atoms on
the surface consist of a bright spot with a dark shadow around them. These
are single atoms of Sn on top of the S surface. As schematically described in
figure 4.9, their location at the center of the triangles of the kagome lattice
suggests that we can expect a strong interaction between the flat band and
the Sn atoms.

Note that Sn atoms at the surface are different than the defects leading to
quasiparticle interference scattering and discussed in Ref. [44]. The Sn atoms
produce a much larger distortion of the local density of states and no visible
oscillations, at least not when there are a large number of close lying Sn atoms.
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Indeed, when taking full tunneling conductance maps (figure 4.10 c) we
observe a considerable energy dependence of the shape of the density of states
around Sn atoms as a function of the bias voltages, with only a small amount
of quasiparticle oscillations. For voltages above the flat band (~ -9.5 mV), Sn
atoms provide a dip in the tunneling conductance which is localized around the
atom site and essentially independent on the bias voltage. When approaching
the flat band, Sn atoms start building up a corona of charge around them. The
radius of this corona increases when decreasing the bias voltage in a narrow
energy range below the flat band.

At 14 T (figure 4.10 e) we observe qualitatively the same behavior, with
coronas having more pronounced borders.

The coronas have a triangular shape and are oriented randomly along one of
the six possible orientations of the structure shown in figure 4.9. To account for
the behavior on a large number of isolated atoms, we make a C3 symmetrized
Fourier transform and study its evolution with energy. Due to the triangular
coronas, we find a hexagonal structure located around k = 0 (see black hexagon
in the FFT maps of figures 4.10 c and d). The hexagon increases in size when
reducing the bias voltage, both at zero field and at 14 T. The bias dependence
of the size of the hexagon is marked with the black arrows in the FFT maps in
figure 4.10 ¢ and d for 0 and 14 T, respectively. By inverting the wavevector,
we can find the bias dependence of the average size of the triangles in real space
(figure 4.10 e). We see that the lateral size of the corona shape increases when
increasing the bias voltage towards the position in energy of the flat band.

We can interpret the data considering the generic shape of the electronic
density of states. Remember from the bulk band structure description above
that there are only spin up bands crossing the Fermi surface in absence of SOC.
We can hypothesize that the Sn produces a modification of magnetic order, in
which case there are few states to screen the charge in a range of about 100
meV above the Fermi level. So that the charge on the Sn atoms on the surface
remains essentially unscreened, with small dips in the tunneling conductance
at the Sn sites (blue areas in figure 4.10 ¢ and d). The dips confirm that
the Sn atom provides positive charges, or a reduction of the electron density.
When reaching the flat band, screening builds up, with an enhanced charge
density around the Sn atoms. This is at first sight puzzling, as the magnetic
polarization of the bulk bands and the said absence of screening at higher
energies points out an opposite magnetic polarization around Sn than for the
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bulk electrons at the Fermi level and the macroscopic magnetization. However,
the flat band has an opposite spin polarization as the bulk [170], so that it
should be oriented along a similar direction than the spins on Sn, for which
the flat band can screen the charge of Sn.

The screening leads to a corona of charge around the Sn atoms. The size
of the corona is of approximately five Sn interatomic distances or ten Co dis-
tances, suggesting partial screening due to the flat band. When decreasing the
bias voltage away from the flat band, the coronas close leading to triangles
with a large charge accumulation. The size of the triangles decreases down
to about three S interatomic distances. This suggests that charge screening
builds up around the Sn impurity. The magnetic field leads to a slightly steeper
dependence of the size of the triangles, suggesting less efficient screening with
the decrease of inverse polarization on the flat band with the applied magnetic
field (see Ref. [141]).

4.5.2 Sn atomic chains

In the previous section we have studied isolated Sn atoms which lead to a
triangular shape of the density of states around them. This leads to the corona
described above. However, as we can see in figure 4.8, we can also find fields of
view in the sample where there is an accumulation of Sn atoms along chains.
This changes the interaction from 0-D to 1-D. In presence of a flat band, the
phenomenology is likely being different in a one-dimensional chain.

Figure 4.11 a shows a topographic image at 0 T of an area with Sn atoms
on top of the S surface. In order to see how the Sn adatoms change the density
of states, we superimposed the largest values of the conductance measured at
-90 mV on the topography (yellow color). It can be seen that these points
concentrate in single atoms and chains containing only two atoms. This only
occurs when the chains are not too close together. We can now discuss the full
bias voltage dependence of the conductance (figure 4.11 b and c right panels).
We see that on a single Sn atom, the conductance at the flat band energy de-
creases and instead the conductance at negative bias strongly increases (figure
4.11 b right panel). For two Sn atoms, we see large conductance values on
both atoms (figure 4.11 ¢ right panel).
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Fig. 4.11: (a) Topographic image with 100 mV bias voltage and 3.2 nA.
Yellow signal superposed to the topographic image indicates the brightest
points of the conductance maps at -90 mV. Horizontal scale bar is 2 nm.
(b) and (c) show the changes in the conductance for one single atom and
a chain formed by two atoms, respectively. The left panels show a zoom
up of the topography shown in (a) with the Sn atoms highlighted in red.
The middle panels show a conductance map at -90 mV and the right
panel the conductance along the dashed white line as a function of the
distance and bias voltage. Black points indicate the center of the atoms.
Horizontal scale bar in the topographies is 5 A.

It becomes more intriguing when we take a look on longer chains (figure
4.12 b). For three Sn atoms, we observe just two peaks at the end atoms.
For four Sn atoms, also only the two atoms at the ends of the chain have large
conductance at negative bias. For up to six atoms, we observe the same effect:
only the edge atoms have a large conductance at negative bias. In between,
the tunneling conductance remains small. The conductance curves at the end
of the chains are independent of their length, as can be seen in figure 4.12 c.

This suggests that, similar to the case discussed before for isolated atoms,
the spin state of the chain follows the spin of the kagome flat band. But it
also shows that the atoms at the edges have a very peculiar position.

End states have been previously considered in chains of Au on top of Si(553)
[173]. Such states are a consequence of the modified tight binding relation of
an atomic chain when the binding energy of the Au end atoms is lower than
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Fig. 4.12: (a) Topographic image with 100 mV and 3.2 nA. Yellow col-
ored areas superposed to the topographic image indicated the the points
with the largest conductance values at - 90 mV. Horizontal scale bar is
10 nm. (b) show the changes in the conductance for one single atom
until chains formed by six atoms. The left panels show a zoom up of
the topography shown in (a) with the Sn atoms highlighted in red. The
middle panels show a conductance map at -90 mV and the right panel the
conductance along the dashed white line as a function of the distance and
bias voltage. Black points indicate the center of the atoms. Horizontal
scale bar in the topographies is 5 A. (¢) Conductance curves taken at the
edge of the atomic chains.

those Au atoms within the chain by an amount which is comparable to the
gaps opened in the tight binding scheme used to describe the Au chains.

Here, however, we can consider another possibility, represented in figure
4.13. There we plot the atomic Sn positions on a chain. We see that the
atoms inside the chain all break the destructive interference phenomenon which
occurs on the triangles of the kagome lattice. However, the atoms at the ends
of the chain have a triangle where the localization condition is satisfied again.
This can lead to a build up of charge at the ends of the chain.

We see that in our case, the chains, independent of their length (number
of atoms), show all end states. The end states decay very rapidly towards
the kagome lattice, but rather slowly towards the chain. The latter decay
presents a certain dependence as a function of the chain length. To analyze
this dependence, we have plotted the curves obtained on top of atomic sites,
divided by r” as a function of the bias voltage (figure 4.14 a-e). We show in
figure 4.14 f and g the dependence of o and  on the chain length. We see
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Fig. 4.13: (a) Schematic representation of the CosSn atomic layer with
the S layer on top. Above the S, a chain of Sn atoms occupies the posi-
tions in the triangles of the kagome lattice. Dark triangles indicate the
shape of the Sn atoms in the topographies and the dashed circles, the
position of the first missing Sn atoms. (b) Schematic representation of
the flat band as a function of the position on the chain. The expected
behavior is that the flat band (green line) disappears on the chain (left).
However, we find two localized states at the edges of the chain, as indi-
cated by the green lines at smaller energies (right).

that shorter chains of a couple of atoms have practically no spatial dependence
and that the decay becomes close to r~! for four atom long chains and then
decreases again for longer chains. At the same time, « is reduced, giving less
energy dependent features for large chain lengths.

For well separated end states, we can expect an exponential decrease. The
observed power law behavior, which essentially flattens in energy and space
for longer chains, suggests the presence of correlations between the end states.

Let us finally note that the end states appear in chains with a kink (figure
4.12 a). This situation is schematically represented in figure 4.15 a, where
the Sn atoms are arranged in a chain with a kink. Thus, the charge is again
located at the end of the chains (figure 4.15 b).
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Fig. 4.14: (a-e) Representation of the conductance curves taken from the
edge to the center of the chain for chains with different length. Curves are
scaled to 7%, where r is the distance from the edge. Black line indicates
the slope far from the Fermi level, which follows the dependence with
Ve «a (f) and 5 (g) as a function of the chain length.

4.5.3 Edge state

We have also studied the presence of edge states in steps of the S surface.
Figure 4.16 a shows a topographic image of a 55 nm x 30 nm area with four
steps where the S layer is exposed. As can be seen in this image, the step
edge is not uniform. As explained before, in the cleaving process, the S layer is
exposed by breaking the atomic bond between this atom and the Sn layer on
top. This process can result in non-uniform step edges with different atomic
terminations or reconstructions. As we see from the height profile in figure
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Fig. 4.15: (a) Schematic representation of the CosSn atomic layer with
the S layer on top. Above the S, a chain of Sn atoms occupies the posi-
tions in the triangles of the kagome lattice, forming a kink. Dashed circles
indicate the position of the next missing Sn atoms. (b) Topographic im-
ages with 100 mV bias voltage and 3.2 nA set-point and conductance
maps at -90 mV. Black dots mark the position of the atoms of the chain.
Horizontal scale lines are 1 nm long.

4.16 c, the steps are not just heaviside functions. There is an increase just
before the step. We attribute this increase to a small amount of Sn atoms
lying on the S layer. We can then discuss the tunneling conductance curves at
the positions indicated in 4.16 d by the colored circles.

The conductance maps in figure 4.16 d-i show a state localized along the
edge of the steps with one-dimensional behavior at small bias voltage, analog
to the states found at the chain ends. Figure 4.16 j shows the conductance
curves at different positions near the step edge. The conductance curve taken
at the Sn edge (red dot in 4.16 d) has the same shape and value than the
curves at the edge of the chains from the cases discussed above. Thus, we
clearly see that the build up of a large density of states at negative bias is
related to the Sn position on top of the kagome lattice of the Co-S blocks.
Schematic representation of the step edge is depicted in figure 4.16 k.

4.6 Conclusions

In summary, we performed high resolution topography images and found
two different possible surfaces. In this material, the three possible surface
terminations (CozSn, S and Sn) provide a hexagonal surface. The strong bond
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Fig. 4.16: (a) Topography in steps exposing the Sn layer, taken at 100
mV and 3.2 nA set point. Horizontal scale line is 10 nm long. The yel-
low line indicates where the conductance (b) and height (c) profiles are
taken. (d-i) Conductance maps at different bias voltages. (j) Conduc-
tance curves in the positions indicated by the colored dots in (d). (k)
Schematic representation of the step edge, where the red atom indicates
the first Sn atom at the edge. The black line indicates the height profile
at the step.

between the CogSn and the S layers layer in comparison with the weaker S-Sn
bond, makes most likely to find S and Sn surfaces in this material. We identified
these two surfaces, both with the same lattice parameter. Conductance curves
measured in both surfaces are very different. In particular, in the S layer we
find a peak at the energy of the flat band due to the kagome lattice [141].
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Sn atoms remain on top of the S surface, forming isolated atoms or atomic
chains. A careful characterization of the isolated Sn atoms on top of the S
surface shows that they are located at the center of the Co kagome triangles,
while the Sn atoms in the CozSn layer are located at the center of the hexagons
of the kagome lattice. Thus, the location of the Sn atoms can have a strong
influence in the kagome flat band.

To study this effect, we performed high resolution spectroscopy maps at
large S surfaces full of isolated Sn atoms on top, at 0 T and 14 T. We hypoth-
esize that the Sn atoms produced a modification of the magnetic order. As
all the bands crossing the Fermi level are polarized with spin up, for energies
above the flat band the Sn atoms remains unscreened. The flat band however,
has a negative magnetization [141]. Then, when the energies are below the
energy of the flat band, the screening around the Sn atoms is possible, and a
corona shape appears surrounding the Sn atoms in the conductance maps.

There are areas on the S surface where the Sn atoms form atomic chains,
changing the iteration from 0-D to 1-D. We performed spectroscopy maps in
these surfaces, finding a large conductance at negative bias voltages for single
atoms and the end atoms of the chains. In the atoms at the middle of the
chain the conductance is small, and no signature of the flat band is observed.
End states have been considered in other materials [173] as a consequence
of the different binding properties at chain ends. In this material, however,
the location of the Sn atoms breaks the flat band formation condition, that
is satisfied again at the edge of the chains. This can explain the increasing
conductance at the edges.

Finally, we performed spectroscopy measurements on steps of the S surface,
finding a similar phenomenon. At the edge of the steps, several Sn atoms
remain. The same increase of the conductance than in the chain edges can
be measured at the first Sn atom (the one closer to the S surface, where the
flat band appears), while a decrease of the conductance is measured in the
rest of the Sn terrace. This result further evidences that the conductance
enhancement is related to the position of the Sn atoms on top of the kagome
lattice.



—Chapter 5

Quantum confinement and
Landau levels of localized
states in the magnetic Weyl
semimetal EuCd,As,

6 HE semimetal EuCdyAsy shares the chemical formula with iron
J based superconductors. It presents magnetism which is highly de-
pendent on the arrangement of bands close to the Fermi surface.

The predicted band crossings [174, 175| provide an interesting system where
Weyl points can appear as a consequence of magnetism (and not of absence of

inversion symmetry as in WTes).

Here, T present STM measurements at the surface of EuCdyAsy. We found
a shift of the valence bands that produce a gap. Localized electrons confined
at the defects appear within the gap, giving a set of states due to lateral
quantization. With the magnetic field, the states further quantize in Landau
levels.

5.1 Atomic structure and magnetic configuration

EuCdsAss is a layered material that belongs to the centrosymmetric space
group P3ml and has lattice parameters a = b = 4.45 A and ¢ = 7.38 A. The
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material orders in the c axis with two layer of Eu enclosing As-Cd-Cd-As layers,
as shown in the lateral view of figure 5.1 a. The magnetism lies in the Eu
layers. When looking at the ab plane, all the layers have a hexagonal atomic
arrangement with the same lattice parameter (see figure 5.1 b).

Fig. 5.1: (a) Lateral and top (b) view of the EuCdyAs, atomic structure.
Dotted line in (b) marks the unit cell. The magnetic moment of the Eu
atoms is indicated with the arrows in (a).

One of the most remarkable aspects of EuCdsoAss is that the magnetic prop-
erties are strongly interlinked with the electronic band structure [176, 177]. As
it is a semimetal, small changes in the band structure lead to considerable mod-
ifications of the magnetic properties. It has been shown [178] that magnetism
can be manipulated using different single crystal growth methods, going from
an antiferromagnet with Ty ~ 9 K to a ferromagnet with T ~ 26 K. The
modifications have been associated to changes in the electronic structure and
the Eu?* content.

Band structure calculations are shown in figure 5.2 [174]. We see (figure 5.2
a) that there is a large gap nearly everywhere on the Brillouin zone. Valence
and conduction bands only approach near I'. Valence bands have a As-p
character and conduction bands Cd-s character. The overlap between bands
occurs just in a few meV around the Fermi level, which explains the sensitivity
of the physical properties of this system to small distortions.

Three magnetic phases are considered. First an AFM phase with moments
along c-axis. Within this symmetry (three-fold rotational symmetry [174]),
the bands cross and there is band inversion, but as the bands are protected
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Fig. 5.2: Adapted from |174]. EuCdsAs, band structure calculations,
depending on the magnetic configuration. (a) Band structure for A-type
AFM with the spins along the c-axis. Band structure along the I' - A
direction for (b) AFMc (¢) AFMa and (d) FM configuration. The band
with Cd s character are depicted in red, and the ones with As p character,
in green.

by symmetry, there is no gap opening |174] (figure 5.2 b). In another mag-
netic phase, AFMa, the spins are in-plane forming ferromagnetic layers, but
change sign on each layer. Here, the crossing point is not protected and a
gap opens (figure 5.2 c¢). There is a surface state which has been predicted to
hold interesting topological properties [174]. The gap opening is expected to
be very small, of about 10 meV. Under magnetic fields, the system becomes
ferromagnetic and presents the possibly unique property [174, 175] of having
a single pair of Weyl nodes (figure 5.2 d).

Furthermore, it was recently shown that small differences in the sample
growth can result in either the AFM or FM configurations, depending on the
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initial compositions [178]. The difference between these samples is the band
filling, that can be associated with the Eu-site occupancy.

In this thesis we measured EuCdsAss single crystals provided by the group
of Prof. Paul C. Canfield, grown by excess of Sn flux following the procedure
in [179]. These samples shows an A-type AFM order below Ty = 9.5 K, whose
transition can be seen in the magnetization data [178| (figure 5.3 a). At 2K,
the sample become saturated below 10 kOe when the magnetic field is applied
parallel to the c-axis (figure 5.3 b).

@, O
T
- '--"; o Hlc 6 ¢ —O— H L ¢ Hey = 6.6 £0.1 45
S 4 M 4 —e—Hl|c M =6.7+0.1 1
E . —O—H || c
= B H —~ 330 o = 7.8+ 0.1 1
> 3 . a IS -
e ‘ 32 4 6=10.30 + 0.05 K
Q9 B $ s 20
% 2r ) =10 Curie fit
1 0
» e 0 100 200
0 PN SN TN N TR N s i 0 | I T NN O N |
0 10 20 30 40 50 0 10 20 30 40 50
T (K) H (kOe)

Fig. 5.3: Adapted from [178]. (a) Anisotropic magnetization at 1000 Oe
with the field || ¢ and 1 ¢. (b) Magnetic field dependence magnetization

at 2 K with the field || ¢ and 1 c. In the inset, inverse susceptibility with
a Curie-Weiss fitting.

5.2 STM characterization

The samples were cleaved in the (001) plane in cryogenic conditions, as
described in previous chapters, which allows to have clean and flat surfaces. We
find atomic resolution presenting two well differentiated atomic arrangements.

In figure 5.4 a we show a hexagonal lattice. The distance between Bragg
peaks is of 4.5 A, which coincides with the interatomic distances of any of the

three hexagonal layers present in the crystal structure of EuCdsAss (figure
5.1).
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Fig. 5.4: STM topographic images measured at 100 mV and 0.4 nA
current setpoint of the atomic lattice in (a) the hexagonal lattice and
(b) the linear arrangement. The horizontal scale line in both images is 1
nm long. In the inset, FF'T maps for both images, where the horizontal
scale line is 3 nm™'. The arrow represents the distance between rows
and is of 7.8 A. The circles in the inset provide the Bragg peaks due
to the 2x1 surface reconstruction. (c¢) Topographic image of atomically
flat steps measured at -100 mV voltage and 0.2 nA current setpoint.
The horizontal scale line is 40 nm long. In the inset, height histogram
showing that every step is separated a distance ¢ from the next one. (d)
Topographic image showing a defect in an image measured at 100 mV
and 0.4 nA current setpoint. The horizontal scale bar is 3 nm long. We
also provide the atomic structure superimposed to the image. In the
inset, height profile on top of the defect. In (b,c), the color scale of the
spheres representing atoms is the same as in figure 5.1.

In figure 5.4 b we show the surface on which we have focused our work. We
see that there is no hexagonal arrangement. Instead, we find a linear atomic
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arrangement. From the Fourier transform we obtain that the distance between
atoms in the same row is of 4.5 A and that the distance between rows is of
7.8 A (= 2a cos(30) where a = 4.5 A). This reminds one of the usual surface
reconstructions found in the iron pnictides, the 2x1 reconstruction [180].

Height histograms between atomically flat surfaces show that the step size is
always of ¢ (figure 5.4 ¢). Thus, the surface could be any of the three possible
atomic layers: Eu, Cd or As.

Previous work on CaFegAsy showed that the 2x1 reconstruction is formed
when cleaving at low temperatures [181-183]. CaFegAse and similar pnictide
materials crystallizes in the tetragonal structure and has strongly bonded Fe-
As layers. The Ca plane is the cleaving plane in that case. The cleaving
leaves approximately half of the Ca layer on each cleaved surface, forming Ca
rows on the surface that arrange at 45 degrees to the underlying square As
lattice. The structure of EuCdaAss is clearly different, with hexagonal layers
instead of square layers. The c-axis stacking is similar in CaFegAso than in
EuCdsAsy in that there are FeaAse and CdgoAsy groups which build strong
bonds (although the atomic arrangement in each group is very different [181,
182]). Thus, we can assume that the cleaved layer is the Eu layer and that the
2x1 reconstruction is due to Eu rows. Indeed, when placing atomic positions
on top of our images (figure 5.4 b and d) we can reproduce the images by
assuming that the top layer is made of rows of Eu atoms.

In figure 5.4 d we represent the defects that we discuss in the following.
We show that the observed STM image is compatible with having a single
interstitial Eu atom on the impurity site. The influence of this interstitial
atom extends over large distances. For example in the defect shown in figure
5.4 d, the topography image presents a corrugation of over 1 A on a distance
which extends above 5 nm, i.e. about 10 in-plane unit cells.

As we show below, a small amount of defects produces considerable mod-
ifications of the tunneling conductance over nearly the whole surface. Never-
theless, we always observe similar features on the tunneling conductance and
of its magnetic field dependence, particularly when we are far from defects.
These features are described in figure 5.5.

We observe at zero magnetic field a small conductance for bias voltages
above the Fermi level (figure 5.5, in purple). There are a set of peaks and
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a gap like structure close to the Fermi level which we discuss in more detail
below. For voltages below the Fermi level, we observe a large increase in the
tunneling conductance. This suggests that there are few or no states above
the Fermi level.
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Fig. 5.5: Conductance curves at 0 T and 14 T.

When applying a magnetic field, we observe a considerable increase of the
tunneling conductance below the Fermi level (figure 5.5, green curve). This
suggests considerable changes in the band structure below the Fermi level.

We can compare these results with the predicted band structure shown in
figure 5.2. Clearly, our results are incompatible with the presence of bands
above the Fermi level, as indicated in the bulk calculations. This suggests
that the band structure at the surface is different. Indeed, band structure
calculations [184] show that a gap of several 100 meV opens up at the surface.
The gap is just for states above the Fermi level. Essentially, the valence Cd-s
bands are pushed upwards close to the surface. Below the Fermi level, the
band structure is similar, dominated by degenerate As-p character bands.

The observed increase of the tunneling conductance when applying a mag-
netic field can be related to the lifted degeneracy of As-p valence and the entry
of new bands into the bias voltage range analyzed in our experiment. Further-
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more, we observe no changes above the Fermi level, so that the magnetic field
might not be enough to shift the Cd-s conduction bands to enter the gap.

In general, we observe a decrease of the density of states for negative bias
voltages when measuring on top of defects. This suggests that the bands below
the Fermi level are bent close to defects, increasing the gap at the surface.

5.3 Quantum confinement

5.3.1 Spectroscopy without magnetic field

To understand the behavior on the defects, we performed spectroscopy mea-
surements in an area with defects. In figure 5.6 a we can see an 44 x 88 nm
topographic image with several defects similar to the one described in figure
5.4 d.
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Fig. 5.6: Spectroscopy maps at 4.2 K and 0 T on EuCdyAs,. (a) Topog-
raphy image measured at 100 mV and 0.2 nA current setpoint. Horizontal
scale line is 10 nm long. We highlight the three defects that we discussed
later. (b-q) Conductance maps at different bias voltages. The three de-
fects (r) Conductance curves on top of the colored crosses in (a). Colors
of curves and crosses coincide.

From the curves shown in figure 5.6 r we see that curves made on the center
of the defects have a lower conductance for negative bias than those made far
from defects. Furthermore, there are a set of peaks between about -20 mV and
40 mV which change their energy position and shape on top of defects.
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Fig. 5.7: In (a) we show the topography in the same field of view as in
the previous figure. We highlight three defects. Color lines and numbers
show the position where we took the profiles in (b-d and e-g). In (b-d)
we show the tunneling conductance in a color scale (provided on the top
of (d)). In (e-g) we show the tunneling conductance vs bias voltages on
different positions. We use a color code that goes from black to red,
following the color of the lines shown in (a) and in (b-d). Curves are
vertically shifted for clarity. Note that the curves inside the defect are
nearly flat, suggesting a strong drop of the density of states at the defects.

We can discuss the variation of these peaks vs distance more in detail with
the data shown in figure 5.7. As we see in the top panels (marked 1-3) of
figure 5.7, there is a clear decrease of the tunneling conductance at negative
bias voltages along the position of the defects. In addition, there is a peak
very close to the Fermi level which loses intensity on the defect. There is a
second peak for positive bias voltages which only occurs inside the defect.

The observation of an increased gap at the defect site suggests at the same
time that localized electronic states can occur at the defect sites. These states
mostly occur above the Fermi level. The charging phenomena discussed in the
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following chapter in FeSe do not occur here, probably due to smaller screening
by the tip.

On the other hand, the localized states extend over a spatial range which is
several nm large, far above the atomic scale discussed in the defects of WTes
(chapter 3.1.2). Therefore, the screening effects are not so apparent. Instead,
we can consider here lateral quantization of a discrete electronic state.

To dwell on this, let us write the quantization condition for a confined state
in a one-dimensional quantum well:

h272

Ap= T
2m* L2

(5.1)

where AF is the distance in energy between the states, L is the size of the
quantum well and m* is the effective mass. We can take for AFE the difference
between the states observed at positive bias voltage. We find 9.5 meV for the
states in defects 1 and 2, and 20.5 mV for the state in defect 3. The extension
of the defect 3, as observed in the topography STM image, is smaller than the
other two defects. Taking 17 nm for 1, 2 and 11.5 nm for 3, we obtain an
effective mass of 0.14 m, in both cases.
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Fig. 5.8: Spectroscopy maps at 4.2 K and 14 T on EuCdsAs,. (a) To-
pography image measured at 100 mV and 0.2 nA current setpoint. (b-q)
Conductance maps at different bias voltages. Horizontal scale bar is 10
nm long. We highlight three defects we discuss later. (r) Conductance
curves on top of the colored crosses in (a). Colors of curves and crosses
coincide. We mark with a red circle three defects which we analyze in
more detail in figure 5.9.



113 Chapter 5. Quantum confinement and Landau levels in EuCdoAs»

High [N Low

Distance (nm)

40 -40 -20

-20 0 20 0 20 40
Voltage (mV) Voltage (mV)

40 -20 0 20 40 -40 20 0 20
Voltage (mV) Voltage (mV) Voltage (mV)

40 -40 -20 0 20 40

Fig. 5.9: In (a) we show the topography in the same field of view as in
the previous figure. We highlight three defects. Color lines and numbers
show the position where we took the profiles in (b-d and e-g). In (b-d)
we show the tunneling conductance in a color scale (provided on the top
of (d)). In (e-g) we show the tunneling conductance vs bias voltages on
different positions. We use a color code that goes from black to red,
following the color of the lines shown in (a) and in (b-d). Curves are
vertically shifted for clarity. Vertical dashed lines mark the energies in
table 5.1.

This value of the effective mass is compatible with the values found previ-
ously [175]. In particular, the magnetoresistance presents oscillations under
magnetic fields [175]. From these oscillations, the effective mass was estimated
to be of order of 0.08 m., with however a large error due to the small amount
of observed oscillations [175]. In the same work, ARPES measurements show
the band structure below the Fermi level. From our data, we expect that the
obtained effective mass value refers to bands above the Fermi level, which are
pushed away at the surface but are again found on a defect.
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5.3.2 Spectroscopy at high magnetic field

The observation of Landau oscillations in transport [175] suggests that the
magnetic field can considerably modify the quantization pattern. Indeed, when
applying a large magnetic field we observe very intricate topographic images,
with tunneling conductance maps which also have a much larger variation than
at zero field. We show the result in figures 5.8 and 5.9.

We first remember that there is a generic increase of the density of states for
negative bias voltages, due to the appearance of new bands in the bias voltage
range studied. Also, that the density of states for positive bias voltages does
not change much with the magnetic field. Furthermore, at the defects, there
is an additional decrease of the density of states for negative bias voltages.
Thus, we have the same overall picture as in zero magnetic field. There is
a gap opened at the surface for energies above the Fermi level and defects
produce an additional decrease of states available below the Fermi level.

But the quantization is much more complex under magnetic fields, as we
see in figure 5.9. The spatial range with a gap for negative bias is smaller and
there are a number of states at negative bias close to the defects. At positive
bias, there are generally more states too.

To analyze this, let us remind that lateral quantization under magnetic
fields suffers an additional quantization due to Landau levels. For a harmonic
oscillator, the level sequence is modified in a magnetic field as [185, 186]:

h
Epp=ho(20+n+1)+ %n By, (5.2)
with
w2
w =\ wh + f, (5.3)

where Ej is the top or bottom of the band, w. = eB/m* is the cyclotron fre-
quency, wo = AE/h is the frequency associated with the energy of the quantum
well and [ and n are integers. Using the parameters obtained from the defects
at 0 T we can obtain a series of levels that order in energy as shown in table
5.1. These energies are marked as vertical dashed lines in figure 5.9 e-f. Note
that small changes in the defect size produce a significant change in the levels
values.
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Energy (mV)
-28
-11.1
-0.7
-6
11.2
22.7
28.1

— O O R O O -
N W O = OB

Table 5.1: Energies obtained using Eq. 5.2.
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Fig. 5.10: (a) Bulk band structure at the AFMa configuration. (b) Band
structure at the surface without magnetic field. (¢) Band structure at the
surface when a magnetic field is applied. Red and green colors indicate
the Cd s and As p character, respectively.

We can summarize our observations with the band schemes shown in figures
5.10 and 5.11.

In figure 5.10 a we show the bulk band structure. At the surface, with
zero magnetic field (figure 5.10 b), we see that the conduction bands are
pushed up, with features remaining close to the Fermi level. We hypothesize
that these features remain similar as in the bulk, although this requires a
careful calculation. In any event, the surface reconstruction eliminates the
Weyl points, as the C3 symmetry is lost. When we apply a magnetic field,
new bands appear within the bias range studied in our experiment (figure 5.10

c).
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Fig. 5.11: Band structure at the defects (a) without magnetic field and
(b) with magnetic field. Red and green colors indicate the Cd s and As
p character, respectively. Quantized states are depicted in gray.

On the impurity at zero magnetic field (figure 5.11 a), we observe a shift in
the valence bands. At the same time, there are localized electrons within the
gap. The orbital properties of these electrons are, in absence of calculations,
unknown, although these might well be related to the bulk band structure.
These electrons suffer lateral quantization, producing a set of discrete states.
When applying a magnetic field, the set of discrete states suffers additionally
Landau quantization (figure 5.11 b).

Thus, we have a topological system presenting a highly non trivial set of
quantized states at the surface. The observation of Landau quantization is
different than the one in WTes. Here, we have localized electrons whose wave-
functions describe complex patterns in real space following Landau orbits. This
provides the patterns shown by the conductance images under magnetic fields.

5.3.3 Localization properties analyzed through multifrac-
tality

Multifractal analysis gives information about the localized states. It can be
applied to images to study the distribution and changes in the length scale,
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such as the vortex distribution in superconductors [187, 188] or the Landau
level quantization [189, 190].

Using this analysis, we can assign a set of fractal dimensions that, analog to
the usual concept of dimension, describe the patterns related to the field of view
analyzed. One of the functions that can be used to characterize multifractality
is the multifractality spectrum f(«a). It provides the dimensions « found in a
given field of view. The function is a point centred in the fractal dimension for
a monofractal image. For an entirely random image, the function f(«) consists
of a point centred at o = 2. Multifractality effects broaden the function f(«)
and change the position of the maximum in f(«) from a = 2. Another function
usually used to characterize the multifractality is the generalized dimension
D,. This parameter is analogous to the usual dimension. For a random map
is D, = 2 for all values of ¢, giving a straight line. ¢ are a set of scaling
exponents that distort the image, highlighting different areas with different
heights of pixels. For a multifractal image, its values depend on ¢, resulting in
a sigmoidal curve. We use the box counting method described in ref. [191] to
calculate these parameters.

For the conductance maps at 0 T, the function f(«) broadens for energies
above the Fermi level (figure 5.12 a). We can see that the maximum value of
this function is always near o = 2 but moves towards larger values of alpha at
the energies where f(a) broadens (figure 5.12 b). The values of a4, deviate
from 2 for the energies where the localized states appear in the conductance
maps (figure 5.6), finding the largest increase for the values where the peaks
related to the defects appear. A similar behavior is observed for the generalized
dimension D, (figure 5.12 c¢), which deviates from a straight line for the same
energies.

The conductance maps deviate from the Gaussian distribution for the same
values where the multifractality appears. Figure 5.12 d shows the normal-
ized conductance histograms for the energies indicated with bigger circles in
5.12 b. At - 30 mV, the histogram deviates from the Gaussian distribution
for values below 1 due to the defects, seen as depressions in the conductance
maps (figure 5.6). For positive energies such as 34 mV, where « is also 2, the
conductance distribution does not show deviations from the Gaussian distribu-
tions. However, at the energies where the peaks in the localized states appear
(figure 5.6), and ay,,, increases, the conductance distribution is asymmetric
and is not well fitted by a Gaussian distribution.
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Fig. 5.12: (a) Multifractal spectrum for each conductance map between
+ 40 mV for the measurement showed in 5.6. The voltage dependence is
given by the color code used in (b). (b) Value of o where we find a max-
imum in f(«) as a function of the bias voltage. Bigger dots indicate the
values in (d). Dashed lines mark the energies where the localized states
appear. (c¢) Generalized dimension D,. (d) Normalized conductance his-
tograms at different bias voltages. The experimental data (dots) is fitted
to a Gaussian distribution (solid lines) for each map.

When doing the same analysis for the conductance maps at 14 T, we find
an increase in multifractality. As discussed in the previous section, with the
presence of a high magnetic field, we find that the localized states present
Landau quantization. The function f(«) broadens more at some energies
(figure 5.13 a). The value of a4, increases and increases for a wider energy
range (figure 5.13 b). We can relate the changes in the a4, value with
the energies where the localized states appear in the conductance maps (figure
5.8). Note that the change in energy of the localized states for different defects
is reflected in the multifractal analysis, making a,,., to be # 2 even between
the more prominent peaks. The same behavior is found for D,, which deviates
from a straight line at the same values where f(«) broadens (figure 5.13 c).
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Fig. 5.13: (a) Multifractal spectrum for each conductance map. (c¢) Max-
imum value of the function f(«) from (a). Bigger dots indicate the values
in (d). Dashed lines mark the energies of the quantized states from table
5.1. (c) Generalized dimension D,. The voltage dependence is given
by the color of the curves. Bigger dots indicate the voltages chosen for
the next figure. (d) Normalized conductance histograms at different bias
voltages. The experimental data (dots) is fitted to a Gaussian distribu-
tion (solid lines) for each voltage.

The conductance histograms when the magnetic field is applied present sim-
ilar results that in the previous case (figure 5.13 c). Note that the conductance
distribution can be fitted with a Gaussian curve for energies where . is close
to 2, but deviates when the multifractality increases.

The observation of enhanced multifractal properties in the images at high
magnetic fields, combined with the increased number of discrete states in the
tunneling conductance, suggests a certain tendency towards localization. This
could be related to quantum Hall states at the surface of EuCdgyAss.
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5.4 Conclusions

In summary, we present measurements on the surface of the magnetic semimetal
EuCdsAsy. Apart from the expected hexagonal lattice, we found a 2x1 surface
reconstruction that reminds one of the usual reconstructions of the iron pnic-
tides |180]. Topographies show the presence of impurities on the surface that
we associate with interstitial atoms. The application of the magnetic field has
an important influence on the conductance curves, producing a considerable
increase in the tunneling conductance for energies below the Fermi level.

Spectroscopy maps in areas with defects show localized states that appear
on the defects. On the impurity site, the valence band shifts and localized
states appear in the gap. Spatial quantization produces a set of discrete states
whose energy position depends on the impurity size. Using the quantization
of a quantum well, we obtained an effective mass of the order of 0.14 m..
Note that this quantization is very sensitive to the quantum well size, and
small variations in the size of the defects can produce a significant shift in the
position of the levels.

When a magnetic field is applied, the states also quantize in energy, pro-
ducing complex variations in the spectroscopy maps. Using the formula for
a harmonic oscillator quantized by the presence of a magnetic field and the
parameters obtained for the zero field case, we obtain a set of levels that can be
compared with our results. Multifractal analysis of the conductance maps re-
flects the localization of states. Multifractality increases at the energies where
the localized states appear.



—Chapter 6

Absence of screening in orbital
selective superconductor FeSe

s explained in the introduction, high temperature superconductiv-
ity in the iron based superconductors is interwined with nematic
and magnetic order [73]. FeSe is a particular example where ne-

maticity and superconductivity arise in absence of magnetic order. Although
there is no magnetic transition, as in other iron based superconductors, mag-
netic correlations are important and are connected to the features in orbital
arrangements that occur at the nematic transition [192|. Furthermore, the
carrier density is very low and the Fermi surfaces very small.

Here I present a study of stoichiometric FeSe at low temperatures, resolving
its band structure using QPI. We find a localized state at the defects and
a charging ring like feature that can only be explained by the opening of a
semiconducting gap in a portion of the band structure which is well separated
from the rest of the band structure, possibly due to orbital selectivity. The
size of the ring depends on the voltage due to the electric field produced by the
tip. We have also studied FeSeq 7150.29, which is not nematic. In this system,
the defects do not present the said features.
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6.1 Introduction

FeSe is unique among the iron based superconductors because of the pres-
ence of strong orbitally dependent electronic correlations and small Fermi sur-
faces. Its crystalline structure is the simplest among the Fe-based supercon-
ductors. It consists of a layer of Fe atoms sandwiched between two layers of
Se atoms and strongly bonded to them. This set of layers is stacked in the
¢ direction with van der Waals forces between them, as represented in figure
6.1.

(b) (c)
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Fig. 6.1: Schematic representation of the low temperature Cmma or-
thorhombic atomic structure of FeSe. Fe atoms are depicted in green
and Se atoms, in blue. General (a), lateral (b) and top (c) views. Light
black lines delimit the unit cell. Purple dotted line in (b) indicates the
cleaving plane. Black circles in (¢) indicate the top Se atoms accessible
with the STM tip after the cleaving process.

FeSe undergoes a tetragonal to orthorhombic transition below Ty at 90 K
that stabilizes a nematic electronic state. In addition, it becomes supercon-
ducting below 8 K. Unlike most Fe-based superconductors, FeSe is not mag-
netic. Magnetism is believed to be connected to a high critical temperature
in these materials through the spin fluctuation pairing mechanism. However,
superconductivity in FeSe is remarkably tunable. Under pressure, T, in FeSe
reaches nearly 37 K [193] and in gating configurations, T, can be boosted up
to 43 K with an applied voltage [194]. In addition, superconductivity can be
found up to 65 K in monolayers deposited on SrTiOg, without any sign of bulk
magnetism [195].
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Fig. 6.2: (a) and (b) adapted from [196]. Schematic phase diagram of
FeSe;_,S;and FeSe under pressure, respectively. (¢) Adapted from [195].
Temperature dependence of the gap value of FeSe single layer. The green
line represents the BCS gap dependence.

The fourfold symmetry breaking of the electronic properties at the nematic
transition has been characterized by measurements of the in-plane anisotropy
of the resistivity [197], quasiparticle interference [198] and nematic suscep-
tibility in response to an external strain [199]. The nematic transition also
manifests in strong changes in the anisotropy of the Fermi surface and of the
scattering properties at low temperatures, as detailed below.

Fig. 6.3: Adapted from [196]. Calculated Fermi surface for FeSe, with
three hole-pockets at I', and two electron-pockets at M. Colors indicate
the orbital character of the pockets.
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In the tetragonal phase, above T, DFT calculations obtain three quasi-2D
hole pockets around the T' point («, 8 and 7 pocket), occupying a sizeable
fraction of the Brillouin zone, and two large quasi-2D electron pockets around
the M-point (§ and €) [199] (figure 6.3). However, ARPES and quantum
oscillation measurements have shown that the high-temperature bands have
orbital-dependent band renormalizations, with respect to band structure cal-
culations, which are particularly significant for the bands with d,, character.
This leads to a significant shrinkage of the Fermi surfaces (a factor of ~ 5, com-
pared with calculations) [199, 200]. In addition, the hole pockets are shifted
down such that the pockets are much smaller with rather small kr values the
I' point, becoming larger at the Z point. The Fermi surface obtained experi-
mentally by ARPES and quantum oscillation measurements above T consists
of two hole pockets with d,. and d,. character (figure 6.4 a): an outer quasi-
2D hole pocket («) and a small 3D inner hole pocket which just crosses the
Fermi level around the Z point (). In addition, there are two elongated elec-
tron pockets at the Mx and My points with d,./d,, and dy./d,, character
respectively (figure 6.4 a)[199, 201].

In the nematic phase below Tg there is a strong in-plane deformation of the
whole Fermi surface, becoming two-fold. The two-fold nature is only observed
in detwinned samples, where there is just one domain [202, 203]. Samples
showing the two possible two-fold domains provide four-fold features [199,
204]. The deformation emerges because of the lifted degeneracy between the
dy» and d,, orbitals [86, 205] at low temperatures (figure 1.22 b). In addition,
the 3 hole band is pushed below the Fermi level. The o pocket elongates and
becomes eliptical at low temperatures. The electron bands are made of the
dy. and d, orbitals that lose their degeneracy at low temperatures, with, in
addition, some dg,, character [196]. As we show in figure 6.4, the d,, character
is along the I' — My axis and the I' = M x axis. The d,, and d,, characters are
perpendicular to both axis in each electron pocket.

The lifted degeneracy in the low temperature nematic phase is represented
as in figure 6.4 b. The d,, and d,, bands along the lines I' = My and I' - My
are no longer degenerate (have the same shape). The splitting eliminates the
four-fold symmetry of the high temperature phase and leads to the two fold
symmetry of the low temperature phase.
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As the d. band shifts upwards in energy, the pocket at My shrinks along
the Mx —I'y direction. As the d,, band shifts downwards in energy, the d,.,
portion of the pocket at My should become slightly larger.

The d,, portion of the electron pockets in the nematic phase is not seen
clearly in many ARPES measurements, except in Ref. [206], where it is shown
that it vanishes below the nematic transition.

The role of the band crossing shifting between I' — My towards My — I'y
below the nematic transition is important. Along I' — My, the d;, and d,.
bands have different parity and cannot mix [207, 208].

The parity here is defined with respect to the symmetry of the wavefunctions
(odd/even). The symmetry of the wavefunctions is defined by the orbital
character and the phase between the two inequivalent Fe sites in the nematic
crystal structure [208]. Thus, the main aspect defining the symmetry is the xz
mirror plane.

Along I's — My direction, the d;, and d,, bands have the same parity and
can mix [207, 208]. This leads to a band gap opening [206]. When the gap is
opened, the electron like d,, band acquires d,, character and the hole like d,
band acquires d,, character [206]. As a consequence of the hybridization, part
of the d,, band is pushed above the Fermi level [206].

Similar effects are observed in monolayer FeSe and in KFesAss due to an
orbital selective Mott transition, in which correlations produce a modification
of the spectral intensity in the bands [209, 210|. In FeSe, it is assumed that
the main driving mechanism is nematicity [206], although correlations play a
significant role in band renormalization too.

The nematic transition has thus a strong effect on the orbital character. The
electronic properties become orbital selective in the nematic phase [211-213].

S doping suppresses the nematic order and modifies the superconducting
critical temperature [214] (figure 6.2 a). As a consequence, for S concentrations
above z., where the tetragonal phase is recovered at low temperatures, the
Fermi surface is quite similar to this in FeSe above Ty but with slightly larger
F'S pockets [215].



6.2. Introduction 126

(a) S a
dxz 1‘2
[ ] dyz My
- e
e W) E =
I m
> X
(@]
—
TR S G EE R T ¥ EEEE U W S AP
C —
L
r M, r, M, r
(b) >
dxz U r
M 2|
[ ] dyz Y
- {) -
r M
>
(@]
—
(O Sl Y /':-: [~ T T T T T T
(T U C
N 5o J_ - s
r M, r, M, r

Fig. 6.4: Adapted from [206]. Band structure and Fermi surface of FeSe
(a) above and (b) below the nematic transition. In the insert, the Fermi
surfaces for both band structures are presented. Colors indicate the or-
bital character of the bands. Dashed circle indicated the point where the

band crossing leads to a band gap opening.

We measured samples grown by the group of Prof. Paul C. Canfield. They
were grown using chemical vapor transport as reported in [216]. Samples were
plate-like with the c-axis perpendicular to the surface and typical sizes 1 mm
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x 1 mm x 0.05 mm. The samples were measured at 100 mK and magnetic
fields up to 17 T.

6.2 Atomic structure

Fig. 6.5: Adapted from [91]. (a) Atomic resolution STM topographic
image with several defects. In the inset, FFT of the image, where the
peaks corresponding to the Se surface are observed. Horizontal scale line
is 2 nm ™ long. (d) Zoom showing one single defect. In the insert, height
profile of the yellow line over the defect. Both images were measured
at 100 mK with a bias voltage of 10 mV and 4 nA current setpoint.
Horizontal scale bar is 10 nm.

Samples were cleaved in cryogenic conditions with the cleaving method ex-
plained in chapter 2. At 100 mK, the samples have an orthorhombic structure
with lattice parameters a = 5.318 A, b = 5.343 A and ¢ = 5.495 A. The layer
exposed after cleaving is always formed by Se atoms due to the Van der Waals
forces between Se-Fe-Se layers. Se atoms form a square lattice with lattice pa-
rameter 3.769 A. Note that the atomic lattice visible (the Se sublattice) with
STM is tilted 45° with respect to the unit cell, which follows the Fe sublattice.

The atomic Se lattice is resolved when making high resolution images (figure
6.5 a). The Se lattice provides a square pattern in the Fourier transform (inset
of figure 6.5 a). We would like to highlight the white spots in this image. At
each spot, there is a defect. When zooming into one of these areas (figure
6.5 b) we find a large modification of the Se lattice. In particular, we see
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that the apparent height increases considerably above the surface and that the
impurity is seen over distances which are very large, of the order of 5 nm or
above. Note that the STM topography is the integral of the density of states
between the Fermi level and the bias voltage. Therefore, it does not only show
a structural modification or a modification of the atomic positions, but also
changes in the local density of states. The observations shown in figure 6.5 b
visually represent a strong modification of the local density of states around
the impurity. From the topographic images (figure 6.13 a), we can estimate a
density of defects of 7.75 - em™2. Using the crystal lattice parameters, we can
assume the electrons move freely ~ 460 unit cells and we can estimate a mean
free path [ = 240 nm. Although this is a rough approximation, the low ratio
of defects is in accordance with the high residual resistivity ratio (RRR) [216].
We can also estimate this value from the resistivity. Using p ~ 20u$2 cm [197],
an effective mass m* = 4m, [196] and a number of carriers n = 3.58 10?0 cm~2,
we obtain [ ~ 137 nm.

6.2.1 Quasi-particle interference analysis

To explore the band structure of FeSe, we performed quasiparticle interfer-
ence measurements. As explained in chapter 2.4.1, for this technique we need
a surface with defects or impurities that act as scattering points. The scatter-
ing process produces oscillating patterns related to the band structure. This
occurs in FeSe particularly for small size defects, marked by yellow circles in
figure 6.13 a. As shown previously in Refs [198, 217|, such small size defects
are mostly responsible for generating the oscillations leading to quasiparticle
interference.

We performed STS measurements in a 43.5 nm x 43.5 nm area at 5 K.
The conductance maps and its Fourier Transform maps (zoomed to show the
Brillouin Zone) are represented for several bias voltages in figure 6.6. The FET
maps are symmetrized according to the Cy symmetry of the nematic phase.
These directions are indicated in the real and momentum space with white
arrows in figure 6.6 a.

In the FFT maps, the scattering periodicities are seen as bright points that
change with the energy. Colored dots in these maps mark the main scattering
vectors we can observe in X and Y directions. The change of the scattering
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Fig. 6.6: STS measurements of an area of 43.5 x 43.5 nm?, at 5 K. The
measurements were taken between + 100 mV with 4 nA set-point. (a-i)
Conductance maps and symmetrized Fourier Transform maps at different
bias voltages. Horizontal white line is 10 nm long in the conductance
maps and 1 nm™! in the FFT maps. Main directions are indicated with
the white arrows. Blue, green and magenta dots in the FF'T maps mark
the main scattering points, and indicate d,,, d,. and d,., respectively.
(j) ¢, = 0 profile and (k) ¢, = 0 profile showing the scattering intensities.
Magenta, green and blue dotted lines indicate the dispersive signals in
accordance with the dots in the FF'T maps. Yellow arrows mark a non-
dispersive signal around 10 mV.

signals with energy can be better seen when plotting ¢, — 0 (figure 6.6 j) and
qy = 0 (figure 6.6 k) profiles, where the main scattering signals are indicated
with dotted lines. We use the same color code for the lines and the dots in the
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FFTs. Colors also indicate the orbital character of the bands in accordance
with figure 6.4.

In the I' = X direction, two hole bands can be seen. The magenta band
crosses the Fermi level and has its top around 10 mV. The green band finishes
very near the Fermi level, without crossing it [91]. These two hole-like bands
are in agreement in size and position with the hole-like bands centered in I'
in figure 6.4. Along this direction, an electron band represented with the
dotted blue line can also be seen. The position of this band coincides with
the electron-like band centered in X, although the size is slightly bigger than
in most calculations. In the I' — Y direction, two hole bands are also visible.
Similar to the I' — X direction, we see that one band crosses the Fermi level
while the other does not [91]. The position in energy and size of both bands
are in agreement with the bands centered in I' in figure 6.4. Note that the
colors of the hole-like bands are different in the I' — X direction than in the
[' - Y direction due to the change in the orbital character (see figure 6.4 b).
The larger band crossing the Fermi level can be associated with the hole-like
a-pocket centered in I' in the Fermi surface, and has been observed in previous
QPI measurements, but only in the I' — Y direction [198, 217|. Note that in
the I' = Y direction the band is wider, as expected from the ellipsoidal shape
of the a-pocket, and have d,, orbital character. No electron band can be seen
in this direction in ours or other QPI measurements [198, 217|. Fermi energies
of the hole-like and electron-like bands crossing the Fermi level are very small,
as previously found.

Moreover, a non-dispersive signal around 10 mV (indicated with yellow ar-
rows in the profiles) can be seen in both directions. The energies where this
signal can be seen correspond to the energies where the defects have its max-
imum spatial extension in the conductance maps. The size of the g-vector
associated to this signal in the FFT at 10 mV corresponds to ~ 8 nm in the
real space, which is the distance between the closest defects. This feature has
been observed in previous reports, but it origin has not been discussed [217].

6.2.2 Defects

To understand the origin of the non-dispersive signal discussed above, we can
compare the conductance curves taken on top of the defects with conductance
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curves taken far from them. Figure 6.7 shows three conductance curves taken
on top of three defects (purple curves) and three curves taken in an area far
from the defects (yellow and orange curves). An increase of the conductance
around 10 mV can be seen for the curves taken on top of the defects, indicated
with the yellow arrow in figure 6.7. Another difference between the curves in
the different positions is the value of the conductance below the Fermi level.
When the curves are taken on top of the defects, the conductance is smaller
than in the curves taken far from defects. The inset in figure 6.7 shows the
distance versus voltage (right) for a profile taken along the green line in the
conductance map (left), on top of two defects. The yellow arrows mark the
energy where there is a difference in the conductance around 10 mV.
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Fig. 6.7: Conductances versus voltage curves taken on top of the defects
(purple colors) and in areas far from the defects (orange colors). The
insets show the conductance map at 10 mV (left) and distance wversus
voltage (right) profile taken along the green line in the conductance map.
Yellow arrows indicate the increase of the conductance at 10 mV.

This difference in the conductance curves indicated a different occupation of
the bands around the defects. The hole bands are less occupied in the defects,
and there is a charge concentration around 10 mV due to the presence of a
localized state in the defects.
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For the localized state to appear, there must be a gap opening between
the electron and hole bands. Figure 6.8 schematically shows the change in
the bands. The gap opens at the points where the hole and electron bands
cross. As we have discussed above, in the nematic phase, the d,, band is
pushed upwards leading to a gap opening in ARPES [206, 208|. Similar gap
openings have been also observed due to correlations [209, 210]. Thus, the
charge accumulation around defects enhances the gap opening. At the same
time, a localized state is built on the defects, giving the peak in the density of
states shown in figure 6.7.

Calculated bands Surface - far from defects Surface - near defects

E E E
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Fig. 6.8: Schematic representation of the hole and electron band that
cross in the M, —I'y direction in figure 1.1. In the surface, these two bands
separate opening a small gap. Near the defects, both bands separate,
opening a larger gap.

6.3 Local discharge around defects

To understand the behavior of the defects on this material, we performed
spectroscopy measurements in a smaller area centered on the defects. Figure
6.9 i shows the topography of an area of 43.5 x 43.5 nm. This measurement
was taken with a superconducting Pb tip to enhance the small features in the
density of states. In this case, the density of states of the tip is not constant
in energy, but presents the superconducting gap and two very sharp peaks
around it. The DOS of the tip can be considered as a function formed by two
o-functions centered in the positions of the quasiparticle peaks of Pb, and being
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exactly zero between them. At sufficiently low temperatures, the tunneling
current measured with this tip is proportional to the density of states of the
sample with an offset in energy equal to the Pb superconducting gap [218].
Thus, the maps represented in figure 6.9 are the current maps at different bias

voltages, where the offset in energy has been corrected. In these current maps,
we can see that a ring is formed between the defects. The radius of the ring
increases when increasing the voltage. This was discussed in chapter 1.2.2 and
is characteristic of semiconducting materials.
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Fig. 6.9: (a-k) Current maps for different values of bias voltage, where
the offset in energy due to Apy, has been corrected. (1) Topographic image
taken at the same time than the current maps, at 100 mV and 4 nA. (m)
Radius of the ring versus voltage measured in @ direction (black) and b
(orange). In the inset, a current profile on the ring is shown at +2 mV.

We measured the radius of the ring for a and b directions, and represented
them versus the bias voltage in black and red dots in figure 6.9 m. The ring
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is homogeneous for small energies. However, when the ring reaches the defects
at 1 mV, it can not continue increasing its size. Thus, the radius in the a
direction can not be as large as in the b direction for energies above 1 mV. In
the inset of this figure, a profile of the normalized current map at +2 mV is
shown. The diameter of the ring can be measured as the distance between the
two peaks. When fitting the radius vs bias voltage to a straight line (figure
6.9 m), it extrapolated down to zero at -5.6 mV in both directions.
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Fig. 6.10: Schematic representation of the band bending and localized
state between the defects (gray circles) due to the influence of the tip
(vellow). When the tip is between the defects, it bends the electron band
(blue) and the localized state (magenta). Depending on the bias voltage,
the localized state goes below the Fermi level at different positions, and
the electrons charge the localized state (first and third rows of figures).
The tip continuous moving and the electrons empty the localized state
in the symmetric position between the defects, making a ring-like feature
with different radius L in the current maps (see text).

Figure 6.10 represents the electron band behavior (blue) and the localized
state (magenta) between the defects (gray circles) in the FeSe surface. The
electron band goes from below de Fermi level (orange dotted line) to above
in the defects and near them, as explained in figure 6.8. A localized state
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originates in the gap between the electron and hole bands, represented by the
magenta line. When the tip approaches the defects, the electron band and
the localized state bend due to the electric field. The field is generated by the
voltage difference between the tip and the sample. When the bending is large
enough, the localized state goes below the Fermi level, and electrons fill it.
This is measured in the tunneling current as a sharp signal. When the voltage
is small (first two lines in figure 6.10) the localized state only goes below the
Fermi level for a small region between the defects, and the radius L is small.

For larger voltages, the band bending is larger. Thus, the localized state goes
below the Fermi level for a larger lateral distance between the tip and the defect
and the radius of the ring increases (see two last lines in figure 6.10). The tip
continues moving between the defects and, when it reaches the symmetrical
position near the second defect, the electrons empty the localized state. This
is also measured in the tunneling current as a sharp jump. This happens for
all the directions around the defects, and the final feature measured has the
shape of a ring whose radius increases when increasing the voltage.

6.4 FeSe-S

[soelectronic substitution, as doping or pressure, modifies substantially the
phase diagram of FeBSCs. In FeSe we can replace selenium atoms for sulfur
atoms outside the iron plane, which causes an internal chemical pressure [199].
We can see in figure 6.11 that the temperature of the nematic transition T
decreases, and it is not longer present for x > 0.17 [214].

Inside the nematic phase, the critical temperature T, displays a small dome,
raising from T, ~ 8.5 K at  ~ 0 to a maximum value of T, ~ 10 K at x ~ 0.10
(figure 6.11). Once the nematic transition is passed, the T, slightly decreases.
The critical temperature is T, ~ 5 K at = ~ 0.29, and hardly changes in the
tetragonal phase towards FeS |75, 219).

The gap opening in the band structure of the nematic phase discussed for
FeSe it is not expected for S-doped FeSe at x > 0.17, since it is in the tetragonal
phase.
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Fig. 6.11: Adapted from [214]. Phase diagram of FeSe;_,S,. The orange
line and dots indicate the structural transition T,. The red line and dots
indicate the critical temperature of the superconducting transition T..
Dashed line mark x = 0.29, the composition discussed in this section.

6.4.1 Atomic structure and superconducting gap

When measured in its stoichiometric form, FeSe has a V-shape double-gap
structure, shown in figure 6.12 a. These two gaps have sizes A; = 1.9 meV
and As = 0.9 meV, and their quasiparticle peaks are indicated in this figure
with purple and green arrows, respectively. The evolution of the gaps from the
deconvoluted density of states with the temperature is shown in figure 6.12
b. The black line indicates the expected BCS evolution for a gap with T, —
8.6 K. In contrast, FeSe;_, S, in the tetragonal phase for x > 0.17 the shape
of the gap change significantly and its double structure disappears.

We measured FeSe;_,S, with = 0.29, a concentration above the nematic
transition at zero temperature. These crystals were grown by the group of Prof.
Paul C. Canfield by chemical vapor transport, as described in [214]. Similar to
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Fig. 6.12: Adapted from [91] and [217]. (a) Tunneling conductance curve
versus voltage on FeSe. The two gaps are indicated with the purple and
green arrows. (b) Temperature dependence of the superconducting gap.
Purple and green dots indicate the variation of the two gaps. Black line
represent the expected BCS temperature dependence for a gap with T,
= 8.6 K. (c¢) Evolution of the superconducting gap for FeSe;_,S, with
the doping. Curves are taken in samples with a S concentration below
the structural transition (blue) and above (red). Sulfur concentration x
is indicated above each curve.

FeSe, these samples were also plate-like with the c-axis perpendicular to the
surface and similar typical sizes. As mentioned before, the atomic structure in
this phase is tetragonal, with a lattice parameter a = b = 5.024 A. As in FeSe,
the atomic lattice is defined according to the Fe layer, but when cleaving, we
access the Se/S layer. The crystallographic directions are rotated 45° with
respect to the surface Se/S layer.

Figure 6.13 a shows a topographic image at 150 K and 0 T, with a bias
voltage of 100 mV and a set point of 2.4 nA. White arrows in the image indicate
the crystallographic directions. A height profile over the defect in the image
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(see upper inset in 6.13 a) shows that the defect is more than five times smaller
in height than the defects in stoichiometric FeSe. Note that this image has
the same size as 6.5 b. However, there is no signature of defects that build up
charge blobs as in pure FeSe. Conductance curves taken on top of the defect
(red dot) and in areas far from it (blue dot) shows no presence of a localized
state (see lower inset in figure 6.13 a).

Topographic images of this compound show a small difference in the atoms
that can be related to the chemical composition [217]. Gray bars in the inset
in figure 6.13 b represents the height histogram of the topography. This his-
togram can be adjusted using two Gaussian curves, with relative weights 0.29
(magenta Gaussian curve) and 0.71 (green Gaussian curve), which correspond
to the concentration of S and Se in the sample. The magenta line in the upper
inset is the sum of both Gaussian curves.
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Fig. 6.13: (a) Topography image with atomic resolution in FeSeq 7150 29
at 0 T, with bias voltage 100 mV and 1.8 nA set point. White arrows
indicate the lattice direction. The horizontal scale bar is 2 nm. The
upper inset shows the height profile of the yellow line over the defect.
The lower inset shows the normalized conductance curves taken on top
of a defect (red line) and in an area far from the defects (blue line). (b)
Normalized conductance curve showing the superconducting gap at 100
mK. The inset shows the height histogram of the image in (a), which can
be adjusted with a 0.29/0.71 S/Se ratio.
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The normalized gap measured in this material at 100 mK is shown in figure
6.13 b. In agreement with previous reports, we only see two quasiparticle
peaks and the density of states is not zero at the Fermi level. Using the first
derivative of the conductance curve, we obtain a gap size A = 0.54 meV.

6.4.2 Vortex lattice

The vortex lattice in the stoichiometric compound FeSe has been studied
with STM, even at magnetic fields close to Heg ~ 17 T [91]. However, it has not
been studied for the doped compound. Previous measurements of the vortex
lattice in FeSe above 8 T [91] shows stripe-like features whose frequencies can
be seen in the Fourier transform maps. Figure 6.14 b shows the vortex lattice
at 8 T of stoichiometric FeSe.

Fig. 6.14: Adapted from [91|. STM measurements of FeSe at 8 T and 100
mK, using 5 mV bias voltage and 4 nA of set point. (a) STM topographic
image, with three nematic domains separated by two twin boundaries.
(b) Zero bias normalized conductance map showing the vortex lattice.
In the nematic regime, the vortex are elongated along a direction. For
the three domains, it can be seen that the vortices rotate 90°, indicating
a change in the direction of the atomic lattice. This direction is marked
with the white arrows for the three domains. The vortices are also pinned
by the domain boundaries. Horizontal scale line in both images is 50 nm
long.
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Fig. 6.15: Vortex lattice at (a) 0.5 T, (b) 1T and (c) 3T in FeSeq 7150.29.
All images were taken with 10 mV bias voltage and 3 nA. Horizontal scale
bar is 30 nm. (d) Inter-vortex distance as a function of the magnetic

field. Error bars indicate the deviation of the inter-core distance from

the central value. Magenta line represents the relation d(nm) = \/%.

Vortex lattice has been previously studied in FeSe;_.S, for doping values
below the nematic transition. When the doping increases, the vortex core
becomes more isotropic as the nematicity decreases [220].

Figure 6.15 a to c shows the vortex lattice for FeSep71S0.09 at magnetic
fields from 0.5 T to 3 T. Contrary to the vortices measured in the stoichiometric
compound, where the nematicity makes the vortex core elongated in a direction
(see figure 6.14 b), the vortices cores in FeSeq 71S¢.29 are isotropic. Although
the vortex lattice is disordered, it tends to orient itself along the crystalline
directions. The vortex density increases when increasing the magnetic field.
Figure 6.15 d shows the inter-core distance of the vortices (black dots). Error
bars in the graph are calculated with the deviation in the vortex distance
from the averaged value. The magenta line indicates expected variation of
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the intervortex distance d with the magnetic field d(nm) = \/% (from Eq.

1.23), showing that the vortices form an Abrikosov lattice.

6.5 Conclusion

In summary, we performed QPI measurements of the band structure of pure
FeSe, observing two hole-like bands along I"' = X and I' = Y directions and one
electron like band along I' = Y direction. We associate these bands with the
expected band structure.

We focused on the behavior around defects. We observed considerable
modifications of the charge distribution around defects. The charge distribu-
tion presents a ring-like feature, which evidences the appearance of charging-
uncharging events when moving the tip on top of the defect.

Such events can only occur in near complete absence of screening. Given
that there are many bands crossing the Fermi level in FeSe, the question is how
can charging effects occur as observed in our experiment. The answer must
lie in the orbital selectivity, which comes together with the nematic transition.
The localized state is likely formed by an orbital whose parity is different than
the parities of the orbitals forming the bands that cross the Fermi level.

The observation of a behavior characteristic of an insulator in a metal and
a superconductor has far reaching consequences. It shows that FeSe is very
close to a transition to an insulating state. Furthermore, it opens many new
possibilities, for example the modification of the polarization around defects
when gating FeSe. The interaction of vortices with charges and the possible
mutual influence is another interesting line to pursue.

The behavior of S doped FeSe without a nematic transition presents no
particular signatures close to defects. In this material, we have also observed
atomic resolution and characterized the vortex lattice, which shows no signa-
tures of nematicity either.
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Conclusions

In summary, I have measured materials with a low density of states at the
Fermi level, with different magnetic and topological properties.

In W'Tes, I resolved the Landau quantization at the atomic scale. I parametrized
the Landau level DOS and reproduced the result, finding evidence of a new
form of Landau oscillations. Using this atomic variation, I resolved two sur-
face states, one associated with the electron bands, with W-5d character, and
the other with hole bands, with Te-5p character. I found evidence for a non
trivial topological character of the surface band structure from the observation
of atomic size Landau quantization. Our measurements thus show that W'Tes
is a topological semimetal.

In CozSnaSs, different surfaces with the same atomic structure can be ac-
cessed when cleaving the sample. 1 characterized these surfaces using atomic
resolution topographies and spectroscopy curves, finding evidence of a flat
band at the S surface, the one closer to the kagome lattice. The tunneling
conductance close to Sn on top of a S surface suffers significant modifications
in the energy range around the flat band. We find an electronic end state
which is caused by the electronic correlations of the kagome lattice.

In EuCdsAss, I found a 2x1 reconstruction of the surface, as well as the
hexagonal lattice expected from the lattice structure. I found defects on the
surface, with a large manifestation in the topographic images. Far from the
defects, the conductance curves correspond with the calculated band struc-
ture for the A-type AFM configuration. However, the spectroscopy measure-
ments in the defects and around them show a different behavior that I could
parametrize using the quantization of a 1D quantum well. With a magnetic
field, the quantization pattern is enriched by Landau quantization. Multifrac-
tal analysis of the conductance maps deviates from the random distribution
due to the presence of the localized states.

In FeSe, the band structure can be reproduced using QPI analysis, finding
two hole bands and one electron band. T also found a resonance signal on
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the defects around 10 mV. This state leads to the formation of a ring-like
feature due to the interaction with the tip. These kinds of features have been
measured before in semiconducting materials due to the absence of screening.
The nematicity and orthogonality of the bands produce an orbital selective
scattering, leading to a gap opening. The low density of states cannot screen
the charge and the tip induces the charge and discharge effects.



Conclusiones

En resumen, he medido materiales con una baja densidad de estados en el
nivel de Fermi, con diferentes propiedades magnéticas y topologicas.

En WTes, he observado la cuantizacion de Landau a escala atémica. He
medido la densidad de estados cuantizada en niveles de Landau, encontrando
evidencias de una nueva forma de oscilaciones de Landau. Utilizando esta va-
riaciéon atémica, he identificado dos estados superficiales, uno asociado a las
bandas de electrones, con caracter W-5d, y el otro a las bandas de huecos, con
caracter Te-bp. Ademas he encontrado evidencias de la acumulacion de la fase
Berry en estos estados al analizar la variacion de los niveles en energia. Por lo
tanto, nuestras medidas demuestran que WTey es un semimetal topologico.

En el Co3SnaSsy se puede acceder a diferentes superficies con la misma estruc-
tura atomica al clivar la muestra. He caracterizado estas superficies utilizando
topografias de resolucion atémica y curvas de espectroscopia, encontrando evi-
dencias de una banda plana en la superficie de S, la més cercana a la red
kagome. Los 4tomos de Sn sobre la superficie de S inducen que la banda plana
se mueva a energias negativas alrededor de los defectos. Al aplicar un campo
magnético, la banda estd mas cerca del nivel de Fermi y el desplazamiento
alrededor de los defectos es menor. Por primera vez, se ha encontrado un es-
tado de borde electronico que estd causado por las correlaciones electronicas
caracteristicas de la red kagome.

En EuCdsAssy, he encotrado una reconstruccion 2x1 de la superficie, asi
como la red hexagonal esperada a partir de la estructura de la red. Encontré
defectos sobre la superficie, los cuales provocan deformaciones significativas en
las iméagenes de topografia. Lejos de los defectos, las curvas de conductancia
se corresponden con la estructura de bandas calculada para la configuracion
AFM de tipo A. Sin embargo, las medidas de espectroscopia en los defectos y
alrededor de ellos muestran un comportamiento diferente que pude describir
utilizando la cuantizacion de un pozo cuantico 1D. Con la presencia de un cam-
po magnético, se observa un comportamiento mas rico debido a la cuantizaciéon
de Landau.
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En FeSe, la estructura de bandas se puede reproducir utilizando el anali-
sis QPI, encontrando dos bandas de huecos y una de electrones. También he
contrado un estado localizado en los defectos alrededor de 10 mV. Este estado
conduce a la formacién de un anillo alrededor del defecto debido a la influencia
de la punta. Este tipo de anillos de carga se han medido antes en materiales
semiconductores debido a la ausencia de apantallamiento. En primer lugar, de-
bido a la presencia de defectos, la banda de electrones se desplaza por encima
del nivel de Fermi, apareciendo entonces el estado localizado. LLa nematicidad y
ortogonalidad de las bandas conducen a que la dispersion dependa del caracter
orbital de las bandas, lo que da lugar a un gap efectivo que induce la aparicién
de dicho estado. La baja densidad de estados no puede apantallar la carga y
la punta induce los efectos de carga y descarga.
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