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Elasticity-driven interaction between vortices in type-II superconductors
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The contribution to the vortex lattice energy which is due to the vortex-induced strains is calculated,
covering all the magnetic-field range which defines the vortex state. The comparison with previously reported
results shows that, in most of the vortex state, it has been notably underestimated until now. The assumption
that only the vortex cores induce strains leads to this underestimation. In fact, all spatial variations of the order
parameter induce strain. Core regions are important because here the order parameter varies strongly, but the
non-core regions~smooth variations! might be even more important if their extension is large enough. It proves
that in high-k superconductors, in which the supercurrent regions with smooth variation of the order parameter
are much more extended than the cores, the major contribution to the vortex-induced strains is due to the
non-core regions.
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I. INTRODUCTION

Since a long time ago, much attention has been paid to
role of long-range strain fields in the vortex state of type
superconductors. It is well known, for instance, that inter
tion between defect-induced strains and vortices causes
ning phenomena. These phenomena have been extens
studied almost since Abrikosov predicted the supercond
ing vortices ~see, e.g., Refs. 1–8!. It is also known that
vortex-induced strains give a contribution to the energies
the vortex lattices~VL’s !. This contribution proves to be es
sential when discussing the observed correlations9 between
VL’s and crystal lattices in anisotropic superconductors.10–12

The vortex-induced strains might also be important in vor
inertia, because they contribute to the effective masse
vortices.13

In this paper, we calculate the contribution to the VL e
ergy due to the vortex-induced strains. Comparison with
previously reported calculations10–12 shows that, for mag-
netic fields not so close to the upper critical fieldHc2, this
contribution has been notably underestimated until now. T
reason of such underestimation is connected with the
that, contrary to what is assumed in many occasions,
vortex core is not the primary source of strain when
Ginzburg-Landau parameterk of the superconductor is large

To clarify this point we shall revise, first of all, the stra
induced by a single vortex. This strain is due to all the spa
variations of the density of superconducting electrons t
the vortex provokes. The vortex core is a region of stro
variations, but is not the only one. There also exists a reg
of smooth variation which is associated with the presence
superconducting currents. In high-k superconductors, the
size of the latter region is much larger than the core o
Because of this greater extension, the non-core variatio
the density of superconducting electrons finally emerges
the main source of strains.

In previous papers,10–12 the elasticity-driven interaction
between vortices was invoked in order to explain obser
correlations between VL’s and crystal lattices. In fact, it w
found strong enough to explain these correlations
0163-1829/2003/68~14!/144515~10!/$20.00 68 1445
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NbSe2.11,12 The proper inclusion of all strain sources in
creases significantly the strength of this interaction. So
those cases in which previous calculations indicated that
elasticity-driven interaction between vortices was not stro
enough should be reconsidered.

Let us mention that we evaluate this interaction taki
into account all the elastic degrees of freedom of fr
samples of finite size, i.e., taking into account both homo
neous and inhomogeneous deformations. In a general c
the elasticity-driven interaction between vortices includ
contributions due to both types of deformations. In the el
tically isotropic case the contribution due to the inhomog
neous deformations vanishes~they are pure shear deforma
tions!. In the anisotropic case, the order of magnitude of
total interaction coincides with that of the contribution due
homogeneous deformations.

The consideration of homogeneous deformations provi
us, in addition, a useful technical trick. Its first step is
evaluate the VL energy for elastically isotropic superco
ductors with infinite shear modulusm. In this case, the cal-
culations are free of approximations and are almost trivial
m5`, the only elastic degree of freedom of the sample is
homogeneous dilatation. Therefore, using already known
mulas for the VL energy and taking into account the dep
dence on the dilatation of the corresponding coefficients,
elastic contribution can be easily calculated. As we shall s
any isotropic case can be reproduced from thism5` one.
Moreover, the previously reported results can be ea
checked by evaluating them form5` and comparing them
with those obtained considering this case from the beginn

Let us mention also that we use the Fourier method w
calculating the VL energy in the elastically anisotropic ca
This method permits us to satisfy quite easily the~elastic!
boundary conditions for a free sample. Thus one avoids
reproduce spurious effects that a lack of attention to th
conditions might give. One such effect is, for instance,
sample form dependence of the elasticity-driven interact
between vortices~the same group of authors reported th
dependence in Ref. 11 but not in Ref. 12!.

The paper is organized as follows. In Sec. II we outli
©2003 The American Physical Society15-1
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how to account for the elastic effects in the London lim
This question is not so trivial because a wrong interpreta
of the London approximation seems to be a reason of
oversight of the importance of the non-core contributions
the elasticity-driven interaction between vortices. In Sec.
we clarify the role that core and non-core regions play in t
interaction, discussing in detail the strain field induced
one single vortex. Here we show explicitly that a large va
of k implies that most of the vortex-induced strain is due
the non-core region. In Secs. IV and V we calculate the
energy taking into account the elasticity-driven interact
between vortices, and compare our results with previou
reported ones. In Sec. IV we deal with elastically isotro
superconductors, while elastically anisotropic ones are c
sidered in Sec. V. Finally, in Sec. VI, we discuss possi
applications of our results.

II. ON THE ELASTIC EFFECTS WITHIN
THE LONDON LIMIT

When studying the influence of the elasticity on the v
tex properties, many authors use an assumption which m
seem quite natural~see, e.g., Refs. 2,5, and 10–12!. It con-
sists of using the ‘‘London approximation’’ introduced b
Abrikosov in Ref. 14~see also Ref. 15!. However, the es-
sence of this approximation could easily be misinterpret
As it is frequently commented, within the London approx
mation the order-parameter modulus varies significantly o
inside of the vortex cores. Since the spontaneous defor
tion associated with the superconductivity is proportiona
square of the order-parameter modulus, it seems natural
only the core regions (r&j) are essential sources of stress
It is just what is assumed in Refs. 2,5, and 10–12. Howe
one has to bear in mind that supercurrents also produc
elastic effect because they diminish the value of the ord
parameter modulus. Locally this reduction is small. But sin
the supercurrents can occupy a very broad region (r&lL),
their effect might be comparable and even more importa
as it virtually proves to be, than the one of the cores.

To make this point more clear, let us recall how the vor
self-energy per unit length«0 is calculated within the Lon-
don limit.14,15 Within this limit one assumes that, when ca
culating the supervelocityvs from the Ginzburg-Landau
equations, the density of superconducting electrons~the
square of the order parameter modulusf 2) is constant in the
corresponding equation. This makes it possible to find
plicitly the spatial distribution of the supervelocity. After do
ing so, one can proceed in two different ways:

~i! Following de Gennes,16 the vortex self-energy is pre
sented as a sum of the magnetic-field energy and the kin
energy of the superconducting electrons:

«05E ~H21 f 2vs
2!d2r ~1!

@we use here the reduced units, see Refs. 14 and 15, w
are analogous of those defined in Eqs.~10! ~see below!#.
Integration is carried out taking into account the alrea
found supervelocity and considering that the density of
perconducting electrons is constant. This approximation
14451
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justified by virtue of the high value ofk: f 2 diminishes sig-
nificantly only atr&j, whereasvs

2 does atr*lL .
~ii ! Following Abrikosov,14,15 the vortex self-energy is

calculated from the exact formula

«05E FH21
1

2
~12 f 4!Gd2r ~2!

~as before, we use here dimensionless quantities!. The prin-
cipal part of this integral arises from the second term and
associated with distances much larger thanj. In other words,
those variations off that takes place out of the vortex co
are now essential.

As we see, to assume that within the London approxim
tion f is constant out of the vortex cores is not always corre
But, as we have pointed out, this is just the assumption
unfortunately many authors made. For example, when stu
ing the interaction between vortices and lattice defec
Miyaharaet al.5 considered integrals which are similar to E
~2! but, at the same time, neglected all the spatial variati
of f at r*j.

It is quite surprising that this assumption has not be
critically revised up to now, especially by noting that,
principle, the importance of the out-of-core region for t
elastic effects could be understood long ago. Galaiko4 con-
sidered the interaction between vortices and dislocati
induced strains. He found that this interaction depends
only onj, but also onlL . However, he did not comment o
Ref. 2 and discussed neither the vortex-induced strain nor
strain-induced interaction between vortices. Reference 8
recent example in which the out-of-core region is tak
into account when studying an elasticity related problem:
structure of a superconducting vortex pinned by a scr
dislocation.

III. ONE SINGLE VORTEX

A. Vortex-induced strain

Let us proceed with the calculation of the strain field i
duced by one single vortex. When doing so, we shall acco
for all the spatial variations, core and non-core ones, that
associated with the vortex.

The free energy can be presented as

F5F11F25
1

vE ~F11F2!dv, ~3!

wherev is the volume of the system, and

F15
H2

8p
1auCu21

b

2
uCu41

1

4mUS 2 i\¹2
2e

c
ADCU2

,

~4a!

F25a i j uCu2ui j 1
1

2
l i jkl ui j ukl . ~4b!

Here and below, summation over double indices is implie
The equations of equilibrium read15,17
5-2



he
te
t

at

e
; s

o
ho

u
i-

y.
r in
ne

r in

-
we

ex.
the
t
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Fa1bUCU21a i j ui j 1
1

4mS 2 i\¹2
2e

c
AD 2GC50,

~5a!

“3H5
4pe

mc F \

2i
~C* ¹C2C¹C* !2

2e

c UCU2AG ,
~5b!

l i jkl ^ukl&1a i j ^uCu2&50, ~5c!

]

]xj
~l i jkl ukl1a i j uCu2!50, ~5d!

where ^•••& means volume average. We shall look for t
solution of these equations for the case of a single vor
The z axis of the coordinate frame we choose is parallel
the vortex. The crystal frame is obtained from this coordin
frame by rotation.

It is clear that far enough from the vortex both the ord
parameter and the strain tensor tend to constant values
Cs andui j

s , respectively. Assuming that^uCu2&.uCsu2, the
equations of equilibrium reduce to

a1buCsu21a i j ui j
s 50, ~6a!

l i jkl ukl
s 1a i j uCsu250. ~6b!

In consequence,

uCsu252a/b* , ~7!

ui j
s 5aakll i jkl

21 /b* , ~8!

where b* 5b2a i j akll i jkl
21 (l i jkl

21 is given by l i jkl
21 l i jk 8 l 8

5dkk8d l l 8). These values correspond to those that one
tains in the homogeneous superconducting phase wit
magnetic field.

To evaluate the effects associated with the vortex let
put ui j 5ui j

s 1ui j
v . Thus we can rewrite the equation of equ

librium ~5a! as

F12
uCu2

uCsu2
2

a i j ui j
v

uCsu2b
1j2S ¹2

2ie

\c
AD 2GC50, ~9!

wherej25\2/(4muCsu2b). It is convenient to introduce the
following notation:

lL5A mc2

8peuCsu2
, Hc5

\c

2A2ejlL

,

C85
C

Cs
, r 85

r

lL
,

~10!

H85
H

A2Hc

, A85
A

A2HclL

,

â85
â

uCsu2b
, l̂85

l̂

uCsu4b
.

14451
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Thus the equations of equilibrium can be written as~we omit
the primes in the following!

~12vs
22a i j ui j

v ! f 2 f 352k22n f , ~11a!

“3H5vsf
2, ~11b!

l i jkl ^ukl&1a i j ^ f 2&50, ~11c!

]

]xj
~l i jkl ukl1a i j f

2!50, ~11d!

where the order parameter has been expressed asC5 f eix,
with vs5k21¹x2A the above-mentioned supervelocit
Herek5lL /j represents the Ginzburg-Landau paramete
our case, which does not differ substantially from the o
without account for the strains (b* .b).

The spatial distribution of the supervelocityvs can be ob-
tained from Eq.~11b! by assuming thatf is constant there,
i.e., within the London limit. Thus one finds thatvs
5k21K1(r), whereK1 is the MacDonald function~see, e.g.,
Ref. 15!.

In Eq. ~11a!, the term withui j
v results to be of orderâ2

because of Eqs.~11c! and ~11d!. Since â is small,18 the
vortex-induced strain can be calculated to the lowest orde
â neglecting the changes inf induced by the termui j

v in Eq.
~11a!. In other words,f 2 in Eqs.~11c! and~11d! can be taken
as the solution of Eq.~11a! with â50. This solution can be
written asf 2512h, whereh represents the vortex contribu
tion. Using the same approximation as that in Ref. 15
have

h~r!5H vs
2~r! r@k21,

12C~kr!2, r!k21,
~12!

whereC is a constant of order unity.
We present the vortex induced strain as19

ui j
v 5e i j 1

i

2 (
qÞ0

@qiuj~q!1qjui~q!#eiq•r

.e i j 1
iA

8p2E d2q@qiuj~q!1qjui~q!#eiq•r, ~13!

whereA is the area of the sample perpendicular to the vort
Heree i j accounts for the homogeneous strain induced by
vortex, andui(q) is the i th component of the displacemen
vector in Fourier space. Thus Eqs.~11c! and ~11d! can be
written as

l i jkl ekl2a i j ^h&50, ~14a!

Gik
21~q!uk~q!1 iSi~q!h~q!50 ~14b!

where Si(q)5a i j qj , Gik
21(q)5l i jkl qjql , and h(q) is the

Fourier transform of the function~12!. For the strain field we
have

e i j 5akll i jkl
21 ^h&, ~15a!
5-3
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A. CANO, A. P. LEVANYUK, AND S. A. MINYUKOV PHYSICAL REVIEW B 68, 144515 ~2003!
ui~q!52 iSk~q!Gki~q!h~q!. ~15b!

When calculating the strain at a fixed distancer from the
vortex, the inhomogeneous strain is mainly given by the
tegrand in Eq.~13! with q!r21. So the main contribution a
long distances (r@1) arises fromq!1. For these smallq’s,
the functionh(q) can be split into core and non-core cont
butions:

hcore~q!.
1

AE0

k21E
0

2p

~r2k2r3!e2 iqr cosudrdu

5
2p

A E
0

k21

~r2k2r3!J0~qr!dr 5
q!1

p

2Ak2 ,

~16a!

hnon-core~q!.
1

Ak2E
k21

1 E
0

2p

r21e2 iqr cosudrdu

5
2p

Ak2Ek21

1 J0~qr!

r
dr 5

q!1

2p

Ak2 ln k ~16b!

~here we have used the asymptotic form ofvs'1/(kr) for
k21!r!1, see Ref. 15!.

As a result, atr@1 the strain tensor can be written as

ui j
v ~r!5hFakll i jkl

21

A
1E d2q

~2p!2
qiSk~q!Gk j~q!eiq•rG

5hFakll i jkl
21

A
1

1

r2E
0

2p

Q i j ~uq!duqG , ~17!

whereh5*h(r)d2r5p(114 lnk)/(2k2), andQ i j is a ten-
sor which depends only on the angleuq (q•r5qr cosuq). If
the sample is large enough the first term in Eq.~17! can be
neglected. But we retain it because, when dealing with
strain-induced interaction~see below!, its contribution be-
comes significant~this fact is well known in the theory o
point defects, see, e.g., Ref. 20!. Note that the non-core con
tribution to h, i.e., the logarithmic term, could also be o
tained from the well-known expression of the vortex se

energy: according to Abrikosov,15 «0.
1
2

*(12 f 4)d2r

.2p*k21
1 h(r)rdr52pk22ln k.

Kogan et al.11 obtained a similar expression for vorte
induced strain considering an infinite medium. In such
case, the first term of Eq.~17! vanishes completely. But th
main difference between Eq.~17! and the expression re
ported by Koganet al.11 resides in the corresponding valu
of h. Assuming that only the vortex core induces stra
Koganet al. reported a valuep/k2. So they overlooked the
logarithmic term inh5p(114 lnk)/(2k2) which arises from
the non-core contributions. This implies that in the case
high-k superconductors, Koganet al. strongly underesti-
mated the vortex-induced strain.
14451
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B. Elasticity-driven interaction between vortices:
Qualitative estimations

Let us now estimate the interaction energy of a VL whi
is associated with the vortex-induced strains. As we h
pointed out before, the inhomogeneous part of these str
has been calculated previously neglecting non-core contr
tions ~see, e.g., Ref. 11!. If the distance between vortices
much longer thanlL , to take into account these non-co
contributions reduces to modify the previously found stra
by a factor. In consequence, the interaction energy that
obtains considering both core and non-core contributions
incides, up to the corresponding factor, with previously
ported ones. Koganet al.,11 for instance, evaluated the inte
action energy of a VL by summing up all pairwis
contributions. Modifying this interaction energy by includin
the non-core contributions, one can see that

F int
(nh);2

~114 lnk!2

k2

DK

K
B2. ~18!

HereDK/K stands for the order of magnitude of the relati
change in the elastic moduli due to the norm
superconducting transition, andB represents the magneti
induction.

The interaction between vortices due to homogene
strains can be easily estimated as follows. It is clear thaN
vortices will induce a total~homogeneous! strainNe, where
e is given by Eq.~15a!, if the distance between them is larg
enough. When substituting this strain in the correspond
terms of VL energy:2a(Ne)(N^h&)1l(Ne)2/2, one ob-
tains 2n2h2a2/(2l), wheren5N/A is the vortex density
~recall thath5A^h&). This is precisely the interaction term
that we are looking for. Taking into account that the vort
density isn5kB/(2p), and a2/l5DK/K @recall that we
are using the dimensionless units defined in Eq.~10!#; this
interaction can be estimated as

F int
(h);2

~114 lnk!2

k2

DK

K
B2. ~19!

As we see, the order of magnitude of both interacti
terms Eqs.~18! and ~19! coincides. Consequently, either o
them gives us an estimate of the order of magnitude of
total interaction energy.

IV. VORTEX LATTICE: ELASTICALLY
ISOTROPIC MEDIUM

It is convenient to begin the treatment of VL’s consideri
the case of elastically isotropic superconductors. In this c
the elastic contribution to the VL energy can be obtain
without any new approximation, from already known form
las for the VL energy. Such formulas are available for t
regionsH'Hc1 , H'Hc2 ~Refs. 14 and 15! and for interme-
diate fieldsHc1!H!Hc2 ~Refs. 16 and 21!. They reason-
ably match at the boundaries of the corresponding regi
~see Appendix!. This permits us to study the elastic effects
isotropic superconductors with the same accuracy. We be
with the casem5` where the calculations are elemental.
5-4
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A. Infinite shear modulus

The only elastic degree of freedom of a system wh
shear modulus is infinite is its homogeneous dilatation. If
system is not clamped this homogeneous dilatation, sau,
must be understood as a variational parameter. In the
energy~3!, this variational parameter modifies the coefficie
of the termuCu2, which can be rewritten asa(u)5a1au.

Let us fix the parameteru for awhile, i.e., let us conside
for a time a clamped sample. Thus after minimizing w
respect to all degrees of freedom butu, the free energy of the
VL with respect to that of the superconducting state can
written as a sum of two terms: au-dependent VL energy via
the coefficienta(u), and the elastic energy. That is,

F5FVL~u!1
K

2
u2, ~20!

whereFVL is given by~see, e.g., Ref. 22 and the referenc
therein!:

FVL.5
BHc1

4p
~ I!,

1

8p FB21BHc1

ln~nd/j!2

ln k G ~ I–II !,

1

8p FB22
~Hc22B!2

11~2k221!bA
G ~ II !,

~21!

over the corresponding regions of magnetic fields defined
~I!: H'Hc1, ~I–II !: Hc1!H!Hc2, and~II !: H'Hc2. Here
bA5^C4&/^C2&251.16 for a triangular VL, and 2 lnn
52(g21)1ln@A3/(8p)#, whereg(50.57772•••) is the Eu-
ler’s constant. The magnetic inductionB and the distance
between vorticesd are such thatB52f0 /(A3d2) in a trian-
gular VL, wheref0 is the flux quantum.B is given as a
function of the magnetic field in the Appendix@see Eq.
~A1!#.

Recall that in high-k superconductors one has the follow
ing relationships~see, e.g., Refs. 15 and 22!:

Hc15
ln k

2k2 Hc2 , ~22!

S d

j D 2

5
4p

A3

Hc2

B
5

8p

A3

k2

ln k

Hc1

B
. ~23!

The critical magnetic fields entering all above expressi
areu-dependent magnitudes:

Hc1~u!5
ln k

A2k
Hc~u!5H c1

° 1Hc18 u, ~24!

Hc2~u!5A2kHc~u!5H c2
° 1Hc28 u, ~25!

whereHc(u)52a(u)Ap/b5H c
°1Hc8u ~with H c

°52aAp/b
and Hc852aAp/b). The ratio d/j is also au-dependent
magnitude, which can be written asd/j5d/j°1(d/j8)u.
14451
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But the Ginzburg-Landau parameterk is independent ofu
because it does not depend on the coefficienta(u).

Let us now proceed to minimize the free energy~20! with
respect tou, i.e., to take into account that the sample is
fact unclamped. After doing so, we obtain

F.5
1

8p
~2BHc1

° 2d IB
2!, ~ I!,

1

8p FB21BHc1
° ln~nd/j° !2

ln k
2d I-IIB

2G ~ I–II !,

1

8p FB22
~H c2

° 2B!2

11~2k221!bA2be
G ~ II !,

~26!

where

d I5
ln2k

2k2

DK

K
, ~27!

d I-II 5
@112 ln~nd/j° !#2

16pK1 2A2Hc8
2B/kH c

°

Hc8
2

k2
.

ln2~d/j° !

4k2

DK

K
,

~28!

be52k2
DK

K
. ~29!

Here it has been taken into account thatHc8
2/(4pK)

5DK/K is the relative change in the bulk modulus due
the normal-superconducting transition. Because this rela
change is usually very smallDK/K!1, the expression for
the region~II ! in Eq. ~26! can be written as

F.
1

8p FB22
~H c2

° 2B!2

11~2k221!bA

2d II~H c2
° 2B!2G , ~30!

where

d II5
be

@11~2k221!bA#2
.

1

2k2

DK

K
. ~31!

In all above expressions for the free energy, one can id
tify a term

F int52
dB2

8p
, ~32!

which describes an attractive interaction between vortic
Since the different expressions in Eq.~21! match one each
other at the boundaries of the corresponding regions~see
Appendix!, the coefficientd can be presented as

d'
@ñ1 ln~d/j° !#2

2k2

DK

K
~33!

taking into account that the ratiod/j° must be replaced byk
if d*lL , whereñ is a constant of order of unity~see Fig. 1!.

According to what we have seen in the preceding sect
the logarithmic contribution to the coefficientd is due to
5-5
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non-core effects. As we show in Fig. 1, the neglecting
these non-core effects leads to underestimation the elasti
driven interaction between vortices. And by virtue of t
high value ofk, such a underestimation is quite significant
almost all the mixed state.

B. Finite shear moduli

It is quite straightforward to extend the results that
have obtained for infinite shear modulusm5`, to the most
general isotropic case. Note that minimizing the free ene
~3! with respect to all elastic degrees of freedom one obta

F252
a2

2K4/3
^uCu4&2

a2

2K

4m

3K4/3
^uCu2&2, ~34!

where K4/35K14m/3. The first term of this expressio
renormalizes the coefficientb of Eq. ~1!. This renormaliza-
tion disappears in the limitm→`. The second term make
that the free energy becomes a nonlocal functional. T
nonlocality remains as long as the shear modulus does
vanish.

From this functional one could recover the free ene
~26! by ascribing the coefficients in Eq.~34! the values they
assume in the casem5`, i.e., a2/(2K4/3)50 and
4m/(3K4/3)51. This consideration does not change t
functional form of Eq.~34! ~only the coefficients change!. So
one concludes that the free energy density of the VL in a
isotropic type-II superconductor has the form of Eq.~26!
with the corresponding renormalized constants:

b→b2a2/K4/3, ~35!

~a2/K !→~a2/K !@4m/~3K4/3!#. ~36!

Note that, because the resulting coefficientd in Eq. ~32!
vanishes ifm50, it can be said that the elasticity-drive
interaction between vortices is associated with the solid-s
elasticity.

FIG. 1. Log-log plot of the coefficientd of the attraction term
;2dB2 of the free energy as a function of the magnetic inducti
taking into account~solid line! and neglecting~dashed line! non-
core contributions. The regions indicated as~I!, ~I–II !, and~II ! ~see
text! correspond tok.100 ~note thatHc1.1024Hc2 in this case!.
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C. Comparison with previously reported results

Let us start this section by comparing our results w
those reported in Refs. 10 and 11. In these references, i
mediate fields far fromTc are considered. Although strictly
speaking the Ginzburg-Landau approach that we use is
valid far from Tc , it still gives correctly the orders of mag
nitude. So the comparison still makes sense. We mention
that in Refs. 10 and 11 the homogeneous part of the str
are omitted. In Ref. 10 this omission is mentioned explicit
while in Ref. 11 it follows from the fact that they conside
infinite samples when calculating the interaction betwe
vortex pairs. Therefore, as we argued in Sec. III B, we c
only compare the order of magnitude~see below for a more
detailed comparison!. Such a comparison reveals that, as
result of neglecting the non-core contributions in the inter
tion energy, this energy is notably underestimated in Refs
and 11 through most of the mixed state~see Fig. 1!. Such an
underestimation is at least by a factor; ln2k close toHc1.

In Ref. 12, treating the caseH'Hc2, both homogeneous
and inhomogeneous strains are seemingly taken into acco
According to Eq.~28! of this reference, the free energy in th
isotropic case should be of the form

F5
1

8p FB22
11~2k221!bA24k2b2

@11~2k221!bA14k2b2#2
~H c2

° 2B!2G ,

~37!

where

b252
a2

~K4/3 !b
bA . ~38!

Because of the smallness ofb2, this expression can be ap
proximated to

F.
1

8p FB22
~Hc2

° 2B!2

11~2k221!bA

2d2~Hc2
° 2B!2G , ~39!

whered25212k2b2 /@11(2k221)bA#2.
One can see that the last term of this expression and

last one of Eq.~30! differ in a numerical factor. A deepe
inspection of Eq.~39! reveals that it is erroneous: the coe
ficient d2 ~i! vanishes ifm5` and ~ii ! remains finite ifm
50. Since the strain-driven interaction between vortices
due to the specific features of the solid-state elasticity,
results one obtains from Ref. 12 in two limiting cases can
be correct. This motivates us to reconsider the probl
treated in Ref. 12~Sec. V B below!.

V. VORTEX LATTICE: ELASTICALLY ANISOTROPIC
MEDIUM

We now proceed to calculate the VL energy in elastica
anisotropic superconductors. First of all, let us reconsider
free energy~3! and, as usual~see Ref. 15!, integrate by parts
term with ¹C. Thus, after using the Gauss’s theorem a
the boundary condition

,

5-6
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n•S 2 i\¹2
2e

c
ADCuS50

(n is the unit vector of the normal to the surfaceS), one
finds that

1

4mE US 2 i\¹2
2e

c
ADCU2

dv

5
1

4mE C* S 2 i\¹2
2e

c
AD 2

Cdv. ~40!

BecauseC satisfies Eq.~5a!, this expression can be writte
as

1

4mE C* S 2 i\¹2
2e

c
AD 2

Cdv

52E ~auCu21buCu41a i j ui j uCu2!dv. ~41!

As a result, the free energy~3! can be presented as

F5
1

vE S H2

8p
2

b

2 UCU41
1

2
l i jkl ui j uklDdv. ~42!

This expression generalizes the Abrikosov’s one@see Eq.~2!#
by taking into account the elastic degrees of freedom. In R
12 it has been reported a similar expression that is errone
however~see Sec. V B below!.

A. H™H c2

When treating the fields far fromHc2, it is convenient to
put uCu25uCsu22h, whereuCsu252a/b* @see Eq.~7!# and
h represents now the VL contribution. In addition, we pres
the strain tensor as ui j 5ui j

s 1ui j
v , where ui j

s 5

2akll i jkl
21 uCsu2 and

ui j
v 5akll i jkl

21 ^h&1
1

2 (
qÞ0

@qiSk~q!Gk j~q!

1qjSk~q!Gki~q!#h~q!eiq•r. ~43!

Thus the equations of equilibrium~14a! and ~14b! are satis-
fied. Substituting these expressions foruCu2 andui j into Eq.
~42!, one finds that

F5Fs1
1

vE S H2

8p
1b* UCsU2h2

b

2
h2Ddv

1
1

2 (
q

b8~q!uh~q!u2, ~44!

whereFs52b* uCsu4/2 and

b8~q!5H a i j akll i jkl
21 ~q50!,

Si~q!Sj~q!Gji ~q! ~qÞ0!.
~45!

Note that, forqÞ0, the functionb8(q) depends on theq
direction only.
14451
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Calculatingh, we can retain the lowest-order terms inâ,
i.e., we can takeh.h01h1 whereh0 is given by solving Eq.
~5a! with â50, andh1 represents the correction to this s
lution due to the terma i j ui j

v in Eq. ~5a!:

bh1.H a i j ui j
v ~out of cores!,

0 ~ inside cores!.
~46!

The absence of correction inside the cores follows from
fact that, in these regions, Eq.~5a! can be linearized becaus
of the smallness of the order-parameter modulus~see, e.g.,
Ref. 15!. Let us remark that even when doing so, the vor
cores are taken into account: they act as strain sources.

Substituting these expressions in Eq.~44!, and retaining
the lowest-order terms, we obtain

F5Fs1b* uCsu2z^h0&1
^H2&
8p

2
b

2
^h0

2&

2b(
q

h0~2q!h1~q!1
1

2 (
q

b8~q!uh0~q!u2, ~47!

wherez511b08/b.
The most important contribution to the two last terms

Eq. ~47! arises fromq,j21.23 At theseq’s, the function
h1(q) can be calculated by takingbh1.a i j ui j

v in all the re-
gions @see Eq.~46!#, so

2b(
q

h0~2q!h1~q!.2(
q

b8~q!uh0~q!u2. ~48!

As a result, the free energy~47! is

F.Fs1b* uCsu2z^h0&1
^H2&
8p

2
b

2
^h0

2&

2
1

2(q
b8~q!uh0~q!u2. ~49!

The last term of this expression represents the strain-indu
contribution to the VL energy. The term withq50 is asso-
ciated with the homogeneous strains. The elastic const
enter this term through an invariant combination@see Eq.
~45!#, so it does not depend on the orientation of the VL w
respect to the crystal axes. This dependence arises from
terms withqÞ0.

Let us mention that this formula demonstrates that
elasticity-driven interaction between vortices does not
pend on the sample form, unlike to the statement made
Ref. 11. Indeed, such a dependence would mean that co
bution to the sum from the region of smallq’s is essential
and comparable with the contribution of the rest of the su
But the functionh0(r)2^h0& is a periodic function defined
in a finite volume~neglecting the near-surface distortions!.
Its Fourier spectrum does not contain smallq’s but has
maxima at the nonzero reciprocal-lattice vectors. The fo
and the size of the sample is reflected in the form and
width of these maxima and nowhere else. In fact, the su
over q’s can be replaced by sums over the reciprocal-latt
vectors (Q) of the VL. Putting
5-7
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h0~r!5(
i

h̃0~r2ri !, ~50!

whereri represent the vortex positions, one finds that

h0~q!5
1

A (
i
E h̃0~r2ri !e

2 iq•rd2r5nh̃0~q!, ~51!

wheren is the vortex density,A is the section of the sampl
perpendicular to the vortex direction, and

h̃0~q![H E h̃0~r!e2 iq•rid2r ~q5Q!,

0 ~otherwise!,
~52!

with Q any of the reciprocal-lattice vectors~note that
A21( ie

2 iq•ri5ndqQ). As a result, the last term in Eq.~49!
can be written as

Fel52
n2

2 Fb8~0!h̃0
2~0!1 (

QÞ0
b8~Q!Uh̃0~Q!U2G . ~53!

Let us emphasize that with this expression, one takes
account that both core and non-core regions act as s
sources. It can be straightforwardly illustrated close toHc1.
Here, due to the large separation between vortices, the f
tion h̃0 in Eq. ~50! practically coincides with the function
associated with one single vortex@see Eq.~12!#. Therefore
the function h̃0(Q) varies slowly up toQ'j21 and then
rapidly drops to zero. So in Eq.~53! it can be approximated
by h̃0(Q).h̃0(0) and naturally splits into core and non-co
contributions@see Eqs.~16!#:

h̃0~0!5p~114 lnk!uCsu2j2/2, ~54!

limiting the sum overQ’s up to Qmax&j21.
Let us calculateFel explicitly for the isotropic case. In this

case one has a i j 5ad i j and l i jkl 5(K2 2
3 m)d i j dkl

1m(d ikd j l 1d i l d jk), whereK and m are the bulk and the
shear modulus respectively. Therefore

b8~Q!5H a2/K ~Q50!,

a2/~K4/3! ~QÞ0!,
~55!

whereK4/35K14m/3, and Eq.~53! yields

Fel52
n2

2
h̃0

2~0!S a2

K
1 (

QÞ0

Qmax a2

K4/3
D

52
n2

2
h̃0

2~0!F 4a2m

3K~K4/3!
1 (

Q50

Qmax a2

K4/3
G

.2
a2h̃0

2~0!

2~K4/3!
S 4mn2

3K
1

n

j2D , ~56!

where the sum over discreteQ’s has been replaced by inte
gration ((Q'n21*d2Q). The term}n represents a renor
malization of the vortex self-energy, while the term}n2 is
the elasticity-driven interaction.
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In the anisotropic case the sum overQ’s in Eq. ~53! also
yields a term}n, which renormalizes the vortex self-energ
and a term}n2 which contributes to the elasticity-drive
interaction between vortices. In this case, the both term
pend on the orientation of the VL with respect to the crys
axes.

Taking into account thatuCsu4b8;Hc
2(DK/K) and

nHcj
2;B/k, the elasticity-driven interaction can be es

mated as

F int;2
~114 lnk!2

k2

DK

K
B2. ~57!

As we see, its order of magnitude coincides with what
obtained in Sec. III B from qualitative estimations, as well
with the exact results that we obtained in Sec. IV for t
isotropic case. Let us mention that omitting lnk in these
expressions, i.e., omitting the non-core contribution to
vortex-induced strain, they reproduce the previously repor
results.11

B. HÉH c2

Let us now consider the VL’s nearHc2. When doing so, it
is convenient to use the conventional dimensionless u
instead of those defined in Eqs.~10!. These conventiona
units can be obtained from Eqs.~10! by replacinguCsu2 with
2a/b.

Following Kogan24 one can easily obtain, now from th
equations of equilibrium~5!, the so-called Abrikosov identi-
ties ~see also Refs. 14,15, and 25!. In presence of strain they
read

Hz5H02
v

2k
, ~58a!

k2H0

k
^v&1

122k2

2k2 ^v2&2a i j ^ui j v&50. ~58b!

HereH0 is a constant andv is the squared modulus of th
functionC, which is the solution of linearized equations~5a!
and ~5b! (C5Aveix). Bearing in mind that the magneti
induction isB5^Hz&5H02^v&/(2k), from Eqs.~58! one
can also obtain the following relationship:

^v&5
2k~k2B!

b̃A2be

, ~59!

where be522k2a i j ^ui j v&/^v&2 and b̃A511(2k2

21)bA , with bA5^v2&/^v&2.
Bearing in mind that from the Abrikosov identity~58a! it

follows that ^H2&5B21(^v2&2^v&2)/(4k2), the free en-
ergy ~42! can be rewritten as

F5B22
b̃A

4k2 ^v&21
1

2
l i jkl ^ui j ukl&. ~60!
5-8
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Expressingui j in the form ~13! and taking into account tha
uCu25v, one finds that

e i j 52akll i jkl
21 ^v&,
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14451
ui~q!5 iSj~q!Gji ~q!v~q!, ~61a!

wherev(q) is the Fourier transform of the functionv. The
last term of Eq.~60! is now
1

2
l i jkl ^ui j ukl&5

1

2 Fl i jkl e i j ekl1 (
qÞ0

Gi j
21~q!ui~q!uj~2q!G

52
1

2 Fl i jkl lmnkl
21 amne i j ^v&1 i (

qÞ0
Gi j

21~q!Gk j~q!Sk~q!ui~q!v~2q!G
52

1

2 Fa i j e i j ^v&1 i (
qÞ0

Si~q!ui~q!v~2q!G52
1

2
a i j ^ui j v&5

be

4k2 ^v&2. ~62!
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The free energy~60! can be written as

F5B22
b̃A2be

4k2 ^v&25B22
~k2B!2

b̃A2be

. ~63!

Let us mention that the form of this expression for t
free energy differs substantially from that reported by Mi
nović et al. in Ref. 12. The elasticity-driven interaction ter
that given by Eq.~63! is several times smaller than the co
responding one in Ref. 12. The validity of Eq.~63! can be
checked by noting that it reproduces the isotropic case@see
expression~II ! in Eq. ~26!#. In contrast, the expression re
ported in Ref. 12 does not~see Sec. IV C!. The reason is tha
it is obtained from an expression analogous to Eq.~42!, but
erroneous@Eq. ~20! of Ref. 12#. Using Eqs.~16! and~12! of
Ref. 12 in Eq.~20! of the same reference such an express
reads

F5
1

vE S H2

8p
2

b

2
uCu41a i j ui j uCu21

1

2
l i jkl ui j uklDdv.

~64!

One can see here that the terma i j ui j uCu2 is taken into ac-
count twice: one time explicitly and another time implicit
in the term2buCu2/2 which arises as a result of the integr
tion by parts performed at the beginning of this section.

VI. CONCLUDING REMARKS

We have revised the contribution to the VL energy whi
is due to the vortex-induced strains, showing that essen
corrections to the previous calculations are needed. The m
important one is connected with the fact that, in high-k su-
perconductors, not only do the vortex cores induce strain
a significant way; there also exists a significant contribut
associated with the non-core regions which are, in fact,
-

n

ial
st

in
n
e

most important ones for the VL energies at low fields (H
!Hc2). As a result of the proper inclusion of all strai
sources, the strength of the elasticity-driven interaction
tween vortices increases by a factor up to; ln2k compared
with the previously reported ones.

It is known since long ago that the observed correlatio
between VL’s and crystal lattices in dirty superconducto
cannot be explained without the elasticity-driven interact
between vortices.10 This interaction has been proved to b
important in clean superconductors also. For example,
VL’s observed in Nb Se2 do not correspond to the minimum
of the London energy. In Ref. 11 Koganet al. showed that
the difference in the London energies of the two possi
competing structures is smaller than the difference in
energies of the corresponding elasticity-driven interactio
that they calculated. As we have mentioned, Koganet al.
underestimated the elasticity-driven interaction between v
tices because they assumed that only the vortex cores in
strain but, even doing so, they pointed out the importance
this interaction in NbSe2. In fact this is even more importan
as we have shown in the present work, which should
taken into account especially in those cases in which pr
ous estimates concluded that the London energy was
most important one.

V3Si might provide an example in which the latter ca
takes place. In Ref. 26 it was claimed that in V3Si the con-
tribution to the VL energy which is due to the~underesti-
mated! elasticity-driven interactions between vortices can
neglected compared to the contribution due to the nonlo
corrections to the London energy. But bear in mind that~i!
the order of magnitude of these two contributions is t
same, as it was shown in Ref. 11 considering the vortex co
as the only sources of strains, and~ii ! the elasticity-driven
interaction is considerably stronger than it was reported
we have shown in this paper. So it is quite probable tha
V3Si, as well as in other superconductors with largek, this
elasticity-driven interaction between vortices is not on
comparable, but even more important than the nonlocal
rections to the London energy.
5-9
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APPENDIX

Let us check that the expressions in Eq.~21! match one
each other at the boundaries of the magnetic-field reg
defined therein, with reasonable accuracy. As we alre
mentioned, this matching permits us to study the elastic
fects in the whole region of the vortex state of isotrop
superconductors.

Recall first that the magnetic induction, as a function
the magnetic field, is given by22

B.5
2f0

A3lL
2

ln22F 3f0

4plL
2~H2Hc1!

G ~ I!,

H2Hc11
f0

8plL
2 H lnF4plL

2~H2Hc1!

f0
G1g̃J ~ I–II !,

H2
Hc22H

~2k221!bA

~ II !,

~A1!
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