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Elasticity-driven interaction between vortices in type-ll superconductors
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The contribution to the vortex lattice energy which is due to the vortex-induced strains is calculated,
covering all the magnetic-field range which defines the vortex state. The comparison with previously reported
results shows that, in most of the vortex state, it has been notably underestimated until now. The assumption
that only the vortex cores induce strains leads to this underestimation. In fact, all spatial variations of the order
parameter induce strain. Core regions are important because here the order parameter varies strongly, but the
non-core regiongsmooth variationsmight be even more important if their extension is large enough. It proves
that in high« superconductors, in which the supercurrent regions with smooth variation of the order parameter
are much more extended than the cores, the major contribution to the vortex-induced strains is due to the
non-core regions.
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. INTRODUCTION NbSe.'*? The proper inclusion of all strain sources in-

creases significantly the strength of this interaction. So all

Since a long time ago, much attention has been paid to ththose cases in which previous calculations indicated that the
role of long-range strain fields in the vortex state of type-ll elasticity-driven interaction between vortices was not strong
superconductors. It is well known, for instance, that interacenough should be reconsidered.
tion between defect-induced strains and vortices causes pin- Let us mention that we evaluate this interaction taking
ning phenomena. These phenomena have been extensivéhfo account all the elastic degrees of freedom of free
studied almost since Abrikosov predicted the superconductsamples of finite size, i.e., taking into account both homoge-
ing vortices (see, e.g., Refs. 148It is also known that neous and inhomogeneous deformations. In a general case,
vortex-induced strains give a contribution to the energies ofhe elasticity-driven interaction between vortices includes
the vortex latticegVL's). This contribution proves to be es- contributions due to both types of deformations. In the elas-
sential when discussing the observed correlatidretween tically isotropic case the contribution due to the inhomoge-
VLU's and crystal lattices in anisotropic superconduct8fé?  neous deformations vanishébey are pure shear deforma-
The vortex-induced strains might also be important in vortextions). In the anisotropic case, the order of magnitude of the
inertia, because they contribute to the effective masses dbtal interaction coincides with that of the contribution due to
vortices™® homogeneous deformations.

In this paper, we calculate the contribution to the VL en-  The consideration of homogeneous deformations provides
ergy due to the vortex-induced strains. Comparison with theus, in addition, a useful technical trick. Its first step is to
previously reported calculatiotfs*? shows that, for mag- evaluate the VL energy for elastically isotropic supercon-
netic fields not so close to the upper critical fi¢ld,, this  ductors with infinite shear modulys. In this case, the cal-
contribution has been notably underestimated until now. Theulations are free of approximations and are almost trivial. If
reason of such underestimation is connected with the fagk =0, the only elastic degree of freedom of the sample is its
that, contrary to what is assumed in many occasions, thbomogeneous dilatation. Therefore, using already known for-
vortex core is not the primary source of strain when themulas for the VL energy and taking into account the depen-
Ginzburg-Landau parameterof the superconductor is large. dence on the dilatation of the corresponding coefficients, the

To clarify this point we shall revise, first of all, the strain elastic contribution can be easily calculated. As we shall see
induced by a single vortex. This strain is due to all the spatialny isotropic case can be reproduced from flaisc one.
variations of the density of superconducting electrons thaMoreover, the previously reported results can be easily
the vortex provokes. The vortex core is a region of strongchecked by evaluating them far=o and comparing them
variations, but is not the only one. There also exists a regiowith those obtained considering this case from the beginning.
of smooth variation which is associated with the presence of Let us mention also that we use the Fourier method when
superconducting currents. In high-superconductors, the calculating the VL energy in the elastically anisotropic case.
size of the latter region is much larger than the core oneThis method permits us to satisfy quite easily fledastio
Because of this greater extension, the non-core variation iboundary conditions for a free sample. Thus one avoids to
the density of superconducting electrons finally emerges aeproduce spurious effects that a lack of attention to these
the main source of strains. conditions might give. One such effect is, for instance, the

In previous paper®~'? the elasticity-driven interaction sample form dependence of the elasticity-driven interaction
between vortices was invoked in order to explain observedbetween vorticesthe same group of authors reported this
correlations between VLU's and crystal lattices. In fact, it wasdependence in Ref. 11 but not in Ref.)12
found strong enough to explain these correlations in The paper is organized as follows. In Sec. Il we outline
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how to account for the elastic effects in the London limit. justified by virtue of the high value of: f2 diminishes sig-
This question is not so trivial because a wrong interpretatiomificantly only atp=<¢, whereasy? does afp=\, .

of the London approximation seems to be a reason of the (ii) Following Abrikosov}**® the vortex self-energy is
oversight of the importance of the non-core contributions tocalculated from the exact formula

the elasticity-driven interaction between vortices. In Sec. lll

we clarify the role that core and non-core regions play in this

interaction, discussing in detail the strain field induced by So:f d’p v
one single vortex. Here we show explicitly that a large value

of x implies that most of the vortex-induced strain is due t0(as before, we use here dimensionless quantitiése prin-

the non-core region. In Secs. IV and V we calculate the Vligipal part of this integral arises from the second term and it is
energy taking into account the elasticity-driven interactiongssociated with distances much larger ti§ain other words,
between vortices, and compare our results with previouslyhose variations of that takes place out of the vortex core
reported ones. In Sec. IV we deal with elastically isotropicare now essential.

superconductors, while elastically anisotropic ones are con- As we see, to assume that within the London approxima-
sidered in Sec. V. Finally, in Sec. VI, we discuss possibleion f is constant out of the vortex cores is not always correct.

1
H2+ 5(1—f4)

applications of our results. But, as we have pointed out, this is just the assumption that
unfortunately many authors made. For example, when study-
Il. ON THE ELASTIC EFFECTS WITHIN ing the interaction between vortices and lattice defects,

THE LONDON LIMIT Miyaharaet al® considered integrals which are similar to Eq.

When studying the influence of the elasticity on the Vor_(2) but, at the same time, neglected all the spatial variations
ffatp=¢&.

tex properties, many authors use an assumption which m|gr(1)t It is quite surprising that this assumption has not been

seem quite naturgsee, e.g., Refs. 2,5, and 10318 con- critically revised up to now, especially by noting that, in

sists of using the “London approximation” introduced by ~ . ™ Y ; P » €SP y by 19 '
principle, the importance of the out-of-core region for the

Abrikosov in Ref. 14(see also Ref. 15 However, the es- . ,
sence of this approximation could easily be misinterpreted(.aIaStIC effects could be understood long ago. Gafadan-

As it is frequently commented, within the London approxi- _5|dered the linteraction between vortices and dislocation
. : L induced strains. He found that this interaction depends not
mation the order-parameter modulus varies significantly only ;
nly on &, but also on\| . However, he did not comment on

inside of the vortex cores. Since the spontaneous deform Ref. 2 and discussed neither the vortex-induced strain nor the
tion associated with the superconductivity is proportional to " . . : . .
Eraln-mduced interaction between vortices. Reference 8 is a

square of the order-parameter modulus, it seems natural tha ) ; A
recent example in which the out-of-core region is taken

only the core regionsg= &) are essential sources of stresses. X -~ )
It is just what is assumed in Refs. 2,5, and 10—12. Howeverjmo account when studying an elasticity related problem: the

one has to bear in mind that supercurrents also produce aj;rlljcturg of a superconducting vortex pinned by a screw
elastic effect because they diminish the value of the order- Islocation.
parameter modulus. Locally this reduction is small. But since

the supercurrents can occupy a very broad regjps X ), lll. ONE SINGLE VORTEX
their effect might be comparable and even more important,
as it virtually proves to be, than the one of the cores.

To make this point more clear, let us recall how the vortex Let us proceed with the calculation of the strain field in-
self-energy per unit length, is calculated within the Lon- duced by one single vortex. When doing so, we shall account
don limit.2*15Within this limit one assumes that, when cal- for all the spatial variations, core and non-core ones, that are
culating the supervelocity from the Ginzburg-Landau @associated with the vortex.
equations, the density of superconducting electr¢ihe The free energy can be presented as
square of the order parameter modufd} is constant in the
corresponding equation. This makes it possible to find ex-
plicitly the spatial distribution of the supervelocity. After do-
ing so, one can proceed in two different ways:

(i) Following de Genne¥, the vortex self-energy is pre- wherev is the volume of the system, and
sented as a sum of the magnetic-field energy and the kinetic
energy of the superconducting electrons:

A. Vortex-induced strain

1
F:F1+F2:;f (f1+f2)dv, (3)

2

H b 1 _ 2e 2
Fi==—+a|¥|?+ = |P|*+ —|| —iaV— —A|¥
2 4m C

8w '
80=J (H2+f202)d%p (1) (43
[we use here the reduced units, see Refs. 14 and 15, which AP 1 b
are analogous of those defined in E¢s0) (see below]. Fa= aij | W[*ujj + 5 Nija Uij Uy - (4b)

Integration is carried out taking into account the already
found supervelocity and considering that the density of suHere and below, summation over double indices is implied.
perconducting electrons is constant. This approximation is The equations of equilibrium re&tf’
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1/ 2e \?
a+b|w 2+aijuij+— —iAV——A \P:O,
4m c
(59
4de| h 2e
VXH= —| A(V*VV -V VV*)— — ¥ 2A |,
mc | 2i c
(5b)
Nijii (Ui + ai (| ¥]?) =0, (50)
J 2
a—)(j()\ijk|uk|+aij|‘1’| )=0, (5d)
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Thus the equations of equilibrium can be written(as omit
the primes in the following

(1—vi—aju))f—f3=—k2Af, (11a
V X H=v,f?, (11b)
Nijii{Uki) + a;j(F%) =0, (119

J
a_)(j()\ijklukl+aijf2)zol (110

where the order parameter has been expressedi=age'*,

where(- - -) means volume average. We shall look for theWith Vs=« 'Wx—A the above-mentioned supervelocity.
solution of these equations for the case of a single vortex1€r€x=A ./ represents the Ginzburg-Landau parameter in
The z axis of the coordinate frame we choose is parallel to@Ur case, which does not differ substantially from the one
the vortex. The crystal frame is obtained from this coordinateVithout account for the strainsot =b).

frame by rotation.

The spatial distribution of the supervelocity can be ob-

It is clear that far enough from the vortex both the ordertained from Eq.(11b) by assuming that is constant there,
parameter and the strain tensor tend to constant values; sh§-» Within the London limit. Thus one finds thats

W andu;, respectively. Assuming thatWw|%)=|¥?, the
equations of equilibrium reduce to
a+b|\lf5|2+aijuisj:0, (68)
Nijia Ui+ aij | W[ >=0. (6b)
In consequence,
|\PS|2:_a/b*r (7)
U =aa\j/b*, (8)

where b* =b— ;e\ (Mg IS given by NjjiXiwn

=Sk 6y17). These values correspond to those that one ob-
tains in the homogeneous superconducting phase without

magnetic field.

To evaluate the effects associated with the vortex let u
putu;; = u?j +Uujj . Thus we can rewrite the equation of equi-

librium (5a) as
|\If|2 aijufj +§2(V 2|eA)2 v—o (9)
W |w % hic ’

where&2=%2/(4m|¥|?b). It is convenient to introduce the

following notation:

mc he
)\L: 21 Hc: 3
877e|\1,3| 2\/§e§)\|_

\I,,_ "If A r
“we TN
(10)
H!_ H [ A
V2H, V2HA
. @ & N
Tl T v

=k K,(p), whereK is the MacDonald functiofsee, e.g.,
Ref. 15.

In Eq. (119, the term Withui”j results to be of ordet?

because of Eqs(11¢ and (11d. Since a is small!® the
vortex-induced strain can be calculated to the lowest order in

a neglecting the changes frinduced by the ternai; in Eq.
(11a. In other wordsf? in Egs.(110) and(11d) can be taken

as the solution of Eq.11a with «=0. This solution can be
written asf?=1—h, whereh represents the vortex contribu-
tion. Using the same approximation as that in Ref. 15 we
have

vi(p) p>K1

1—C(«kp)?, 12

h(p)={

p<K_1,

gvherec is a constant of order unity.

We present the vortex induced strairt®as
uj=6jt 5 > [aiuj(a)+ajui(q)]e'd?
g#0

iA .
:éij_’_#f d’alqiuj(q)+qjui(q)]e'?, (13

whereA is the area of the sample perpendicular to the vortex.
Heree;; accounts for the homogeneous strain induced by the
vortex, andu;(q) is theith component of the displacement
vector in Fourier space. Thus Egd.1c and (11d) can be
written as

Nijki € — a;j(h)=0, (143

Gi(@)u(a) +iSi(q)h(a)=0 (14b)
where S(0) = @;;0;, Gj'(d)=\ijuq;q, and h(q) is the
Fourier transform of the functiofi2). For the strain field we
have

&=\ (h),

(153
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ui(q)=—iS«(a)Gyi(q)h(a). (15b) B. Elasticity-driven interaction between vortices:
Qualitative estimations

When calculating the strain at a fixed distapctom the Let us now estimate the interaction energy of a VL which
vortex, the inhomogeneous strain is mainly given by the inis associated with the vortex-induced strains. As we have
tegrand in Eq(13) with q<p 1. So the main contribution at pointed out before, the inhomogeneous part of these strains
long distances>1) arises frong<1. For these smali’'s,  has been calculated previously neglecting non-core contribu-
the functionh(q) can be split into core and non-core contri- tions (see, e.g., Ref. 21If the distance between vortices is
butions: much longer tham\, to take into account these non-core

contributions reduces to modify the previously found strains
1 (o1 (2m . by a factor. In consequence, the interaction energy that one
Neord ) = Kj f (p— Kk?p3e1arcosfypd e obtains considering both core and non-core contributions co-
o Jo incides, up to the corresponding factor, with previously re-
ported ones. Kogast al,* for instance, evaluated the inter-

27 (k1 T
A (p—k?p3)JIo(gp)dp = AR action energy of a VL by summing up all pairwise
0 g<1 contributions. Modifying this interaction energy by including
(163 the non-core contributions, one can see that
(1+41nk)% AK
L (" (% 1 igpcoss Fi~ = ———5—— ?Bz- (18
hnon—coréQ): m 1), p € dpdﬁ K
Here AK/K stands for the order of magnitude of the relative
27 (1 Jo(ap) 2w change in the elastic moduli due to the normal-
= m 1 p p :1 m'n k(16D superconducting transition, ariél represents the magnetic
K q<

induction.

The interaction between vortices due to homogeneous
strains can be easily estimated as follows. It is clear khat
vortices will induce a totalhomogeneoysstrainNe, where
€ is given by Eq(153, if the distance between them is large
enough. When substituting this strain in the corresponding
terms of VL energy:— a(Ne)(N(h)) +\(Ne€)?/2, one ob-
tains —n?7»?a?/(2\), wheren=N/A is the vortex density
(recall thatnp=A(h)). This is precisely the interaction term
that we are looking for. Taking into account that the vortex
, (17)  density isn=«B/(27), and a’/\=AK/K [recall that we
are using the dimensionless units defined in @d)]; this
interaction can be estimated as

(here we have used the asymptotic formuvgfs1/(kp) for
k 1<p<1, see Ref. 16
As a result, ap>1 the strain tensor can be written as

uij(p)=7

N d?q iq.
A +j WQiSk(CI)GkJ(Q)eq”

—1
agNjjg 1 (2
A +F o @),j(ﬂq)dﬁq

where = [h(p)d?p=m(1+4 Ink)/(2«?), and©; is a ten-
sor which depends only on the anglg (q- p=qp cosé,). If (1+4Ink)? AK

the sample is large enough the first term in EL) can be F~—— - — B2 (19
neglected. But we retain it because, when dealing with the K K

strain-induced interactiolisee below, its contribution be-
comes significantthis fact is well known in the theory of
point defects, see, e.g., Ref.)20lote that the non-core con-
tribution to #, i.e., the logarithmic term, could also be ob-
tained from the well-known expression of the vortex self-

As we see, the order of magnitude of both interaction
terms Eqgs(18) and (19 coincides. Consequently, either of
them gives us an estimate of the order of magnitude of the
total interaction energy.

. ) 1
energy: according to Abrikosdv, sozif(l—f“)dzp IV. VORTEX LATTICE; ELASTICALLY

27 ih(p)pdp=2mk~7In k. ISOTROPIC MEDIUM

Kogan et al!! obtained a similar expression for vortex- Itis convenient to begin the treatment of VL's considering
induced strain considering an infinite medium. In such athe case of elastically isotropic superconductors. In this case,
case, the first term of Eq17) vanishes completely. But the the elastic contribution to the VL energy can be obtained,
main difference between Ed17) and the expression re- without any new approximation, from already known formu-
ported by Kogaret al!! resides in the corresponding values las for the VL energy. Such formulas are available for the
of 7. Assuming that only the vortex core induces strain,regionsH~H.;, H~H, (Refs. 14 and 1band for interme-
Koganet al. reported a valuer/ 2. So they overlooked the diate fieldsH.;<H<H., (Refs. 16 and 21 They reason-
logarithmic term inp= 7(1+ 4 In k)/(2«?) which arises from ably match at the boundaries of the corresponding regions
the non-core contributions. This implies that in the case ofsee Appendix This permits us to study the elastic effects in
high-« superconductors, Kogaet al. strongly underesti- isotropic superconductors with the same accuracy. We begin
mated the vortex-induced strain. with the caseu=c where the calculations are elemental.
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A. Infinite shear modulus
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But the Ginzburg-Landau parameteris independent ofi

The only elastic degree of freedom of a system whichbecause it does not depend on the coefficaut).
shear modulus is infinite is its homogeneous dilatation. If the Let us now proceed to minimize the free ene(gg) with

system is not clamped this homogeneous dilatation, isay

respect tou, i.e., to take into account that the sample is in

must be understood as a variational parameter. In the fref@ct unclamped. After doing so, we obtain

energy(3), this variational parameter modifies the coefficient
of the term|¥|2, which can be rewritten as(u)=a+ au.

Let us fix the parametar for awhile, i.e., let us consider
for a time a clamped sample. Thus after minimizing with
respect to all degrees of freedom lithe free energy of the

VL with respect to that of the superconducting state can be

written as a sum of two terms:wadependent VL energy via
the coefficienta(u), and the elastic energy. That is,

K
F=Fy (u)+ Eu2, (20

whereF,, is given by(see, e.g., Ref. 22 and the references

therein:

([ BH,

? (I)a

1 In(vd/ )2

FVLA;{E[B%BH“T} (=10 oy

_ 2

1 Z_M (),

8m 1+(2x2—1)Ba

\

over the corresponding regions of magnetic fields defined
(: H=~H¢q, (I-1l): H;y;<H<H,, and(ll): H=~H.,. Here
Ba={(¥H/(¥?)2=1.16 for a triangular VL, and 2In
=2(y—1)+In[y3/(87)], wherey(=0.57772- -) is the Eu-
ler's constant. The magnetic inductid and the distance
between vorticesl are such thaB=2¢,/(1/3d?) in a trian-
gular VL, where ¢ is the flux quantumB is given as a
function of the magnetic field in the Appendipsee Eq.
(AD)].

Recall that in highk superconductors one has the follow-
ing relationshipgsee, e.g., Refs. 15 and )22

In x
Hclzﬂzchy (22
d\? 47 H 87 k% H
(—) =——_2__ " 4 (23
£ \/§ B \/§|nK B

¢

E(ZBH;—&lBZ), M,
1 . In(vd/g°)?
Fe E{BLFBHM%—&_“BZ} (=1, (29)
° 2
1.,  (Hp=B) l ),
| 87 1+(26°—1) Ba— Be
where
_|n2KAK
=S 2K (27)

[1+2In(vd/&°)]?
16wK+ 2\2H!?B/kH, &2

H.2 Ind(d/¢°) AK
Tl K
(28)

AK

BEZZKZ K

(29

Here it has been taken into account tHaIéZ/(47-rK)
=AK/K is the relative change in the bulk modulus due to

e normal-superconducting transition. Because this relative

change is usually very smallK/K<1, the expression for
the region(ll) in Eq. (26) can be written as

1 (H,,—B)? .
F=~_—— BZ—CZ——5H(Hc2_B)2 , (30
8w 1+ (2xk2=1)Ba
where
1 AK
6 Pe 31

[ 21 27 K

In all above expressions for the free energy, one can iden-
tify a term

5B2

B (32

int— —

The critical magnetic fields entering all above expressionyvhi(:h describes an attractive interaction between vortices.

are u-dependent magnitudes:

In x o ,
Hcl(u):EHc(u):Hcl+Hc1u- (24)
Heo(U)=v2kH(U)=H L, +H.U, (25)

whereH(u)=2a(u) Ja/b=H _+H.u (with H_=2a7/b
and H.=2a+/m/b). The ratiod/¢ is also au-dependent
magnitude, which can be written ag&é=d/&°+(d/&")u.

Since the different expressions in EQ1) match one each
other at the boundaries of the corresponding regi@es
Appendi¥, the coefficients can be presented as

[v+In(d/£°)]? AK
T K 33
taking into account that the ratoh £° must be replaced by
if d=\_, wherev is a constant of order of unitisee Fig. L

According to what we have seen in the preceding section,
the logarithmic contribution to the coefficierdt is due to
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LAAL BLLR 1 11)[ U RULLAL [U UL [ R C. Comparison with previously reported results

100 Let us start this section by comparing our results with

those reported in Refs. 10 and 11. In these references, inter-
mediate fields far fronT; are considered. Although strictly
speaking the Ginzburg-Landau approach that we use is not
valid far from T, it still gives correctly the orders of mag-
nitude. So the comparison still makes sense. We mention also
that in Refs. 10 and 11 the homogeneous part of the strains
are omitted. In Ref. 10 this omission is mentioned explicitly,
while in Ref. 11 it follows from the fact that they consider
infinite samples when calculating the interaction between

(I-ID) (D)

TTTT
—~
—
—

3/d11

T T oo 1/

T PEETEN N U T 171 B S S W B T1T] B A S S AT 1T B SR ETIT | . .
n B > N o vortex pairs. Therefore, as we argued in Sec. Ill B, we can
10 10 10 10 10 ;
only compare the order of magnitudeee below for a more
B/H detailed comparison Such a comparison reveals that, as a

result of neglecting the non-core contributions in the interac-
tion energy, this energy is notably underestimated in Refs. 10
‘and 11 through most of the mixed stdgee Fig. 1L Such an
underestimation is at least by a facterin?« close toH;.

In Ref. 12, treating the cadé~H,,, both homogeneous
and inhomogeneous strains are seemingly taken into account.

non-core effects. As we show in Fig. 1, the neglecting ofAccording to Eq(28) of this reference, the free energy in the
; isotropic case should be of the form

these non-core effects leads to underestimation the elasticit)'/'§
driven interaction between vortices. And by virtue of the
high value ofk, such a underestimation is quite significant in E 1, 1+(2k%—1) Ba—4K%B,

FIG. 1. Log-log plot of the coefficiend of the attraction term
~ — 5B? of the free energy as a function of the magnetic induction
taking into accountsolid line) and neglectingdashed ling non-
core contributions. The regions indicated(Bs (I-11), and(Il) (see
text) correspond toc=100 (note thatH ;=10 *H, in this case

almost all the mixed state “8-1B (Heo=B)?),
. 8 [1+(2x%—1)Ba+4K%B,)?
(37)
B. Finite shear moduli
. . . where
It is quite straightforward to extend the results that we

have obtained for infinite shear modulus=, to the most 5
general isotropic case. Note that minimizing the free energy B,=— @ Ba. (38)
(3) with respect to all elastic degrees of freedom one obtains 2 (Ka/3)b A

a? a® 4u Because of the smallness 8§, this expression can be ap-

— a4 _ — " 2\2 .
FZ 2K4/3<|‘P| > 2K 3K4/3<|\P| > ’ (34) prOXImated to

where K, 5=K+4u/3. The first term of this expression 1 (H°2—B)2
renormalizes the coefficiert of Eq. (1). This renormaliza- F= 8 B2— Cf— 8,(Ho,—B)?|, (39
tion disappears in the limit— . The second term makes m 1+(2xk°=1)Ba

that the free energy becomes a nonlocal functional. This ) 5 5

nonlocality remains as long as the shear modulus does n¥there = —12«“B,/[1+(2k°—1)Bal".

vanish. One can see that the last term of this expression and the
From this functional one could recover the free energyast one of Eq.(30) differ in a numerical factor. A deeper

(26) by ascribing the coefficients in E¢34) the values they inspection of Eq(39) reveals that it is erroneous: the coef-

assume in the caseu=w, i.e., a?(2Ky =0 and ficient _52 (i) vanlsh_es |fH:w- and (||)_ remains finite |f_,u _

4ul(3K49)=1. This consideration does not change the=0. Since the s_traln—drlven interaction between vortices is

functional form of Eq(34) (only the coefficients changeSo ~ due to the spec_lﬁc features of the sohgi—stgte elasticity, the

one concludes that the free energy density of the VL in anyesults one obtains from Ref. 12 in two limiting cases cannot

isotropic type-Il superconductor has the form of Ege)  Pe correct. This motivates us to reconsider the problem

with the corresponding renormalized constants: treated in Ref. 12Sec. V B below.
b—b—a?/Kys, (39 V. VORTEX LATTICE: ELASTICALLY ANISOTROPIC
MEDIUM
(@?IK) = (a?IK)[4ul (3K43)]. (36)

We now proceed to calculate the VL energy in elastically
Note that, because the resulting coefficiehtin Eq. (32 anisotropic superconductors. First of all, let us reconsider the
vanishes ifu=0, it can be said that the elasticity-driven free energy(3) and, as usuakee Ref. 1§ integrate by parts
interaction between vortices is associated with the solid-stateerm with VW. Thus, after using the Gauss’s theorem and
elasticity. the boundary condition
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Calculatingh, we can retain the lowest-order termsdn
i.e., we can také=hy+h; wherehy is given by solving Eqg.
(5a) with =0, andh, represents the correction to this so-
lution due to the termy;;uj; in Eq. (53):

) 2e
n-(—lﬁV—FA)\I’b:O

(n is the unit vector of the normal to the surfag, one

finds that
1 - 26 9 bh— ajui;  (out of cores, 45
mj ‘(—Iﬁv—?A)‘I’ dv o (inside cores.
2 The absence of correction inside the cores follows from the

wdv. (40 factthat, in these regions, Epa) can be linearized because
of the smallness of the order-parameter modykee, e.g.,
Ref. 15. Let us remark that even when doing so, the vortex
cores are taken into account: they act as strain sources.

Substituting these expressions in E44), and retaining
the lowest-order terms, we obtain

(H 2> b

F=Fst+b* |‘Ps|2§<h >+ o _<h0>

] 2e
‘If*(—th——A
4m c

BecauseV satisfies Eq(5a), this expression can be written
as

1 _ 2e \?
— | U*| —iAV— —A| ¥dv
4m c

—f (@ W2+ b |+ ayyuy [P do. (4D
—bE ho( —ha(@)+ 5 2b<q|ho<q>|2 (47)

As a result, the free enerd®) can be presented as
1(/H2 b 1 where{=1+by/b.
F= f (8__ 1k “+ E)\ijkluijukl)dv- (42) The most important contribution to the two last terms in
7 Eq. (47) arises fromgq<é&~ 1.2 At theseq’s, the function
This expression generalizes the Abrikosov's fsee Eq(2)] h1(qg) can be calculated by takingh; = «;;uj; in all the re-
by taking into account the elastic degrees of freedom. In Refgions[see Eq(46)], so
12 it has been reported a similar expression that is erroneous,

however(see Sec. V B below _bz ho( —q)hy(q) = _E b’ (q)|ho(q)|2  (48)
q q

A. H<H,,

As a result, the free energ¢?) is

When treating the fields far fromd.,, it is convenient to )
put|¥|?=|¥2—h, where| ¥ 2= —a/b* [see Eq(7)] and F—F ot bW J2¢(ho) + G 9<h2)
h represents now the VL contribution In addition, we present S s 0 0

the strain tensor asu;=uj+uj, where uj= 1
~ ki ¥4* and ~ 52 b'(@)]ho(@)]? (49
q
=\, k|<h>+ 2 [0iS(0)Gy;j(q) The last term of this expression represents the strain-induced
. contribution to the VL energy. The term witp=0 is asso-
. ciated with the homogeneous strains. The elastic constants
+0;Sd N Gii(@) (e, (43) 0

enter this term through an invariant combinatimee Eg.
Thus the equations of equilibriuil4a and(14b) are satis-  (49)], so it does not depend on the orientation of the VL with
fied. Substituting these expressions [f#2 and u;; into Eq. respect to the crystal axes. This dependence arises from the

(42), one finds that terms withq# 0.

Let us mention that this formula demonstrates that the
2

1 H e ) elasticity-driven interaction between vortices does not de-
F=F¢+t f @’Lb h— Eh dv pend on the sample form, unlike to the statement made in
Ref. 11. Indeed, such a dependence would mean that contri-
1 ) ) bution to the sum from the region of smajis is essential
+ 2 % b’(a)[h(a)]*, 44 and comparable with the contribution of the rest of the sum.
But the functionhy(p) —(hy) is a periodic function defined
whereF¢= —b*|W¥ %2 and in a finite volume(neglecting the near-surface distortipns
Its Fourier spectrum does not contain smgl but has
, aijak|7\ﬂk1| (9=0), maxima at the nonzero reciprocal-lattice vectors. The form
(a)= S(9)S(9Gji(a) (q#0). (45) and the size of the sample is reflected in the form and the

width of these maxima and nowhere else. In fact, the sums
Note that, forq#0, the functionb’(q) depends on theg  overq’s can be replaced by sums over the reciprocal-lattice
direction only. vectors Q) of the VL. Putting
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In the anisotropic case the sum o¥@is in Eq. (53) also

ho(p)=2 Rolp—p)), (50) vyields a termeen, which renormalizes the vortex self-energy,
' and a termx=n? which contributes to the elasticity-driven
wherep; represent the vortex positions, one finds that interaction between vortices. In this case, the both term de-
pend on the orientation of the VL with respect to the crystal
(@)= 5 S fﬁ (p—p)e T PdZp=nhy(q), () T
0 A4 olP P p=1Tot), Taking into account that|¥*b’~H2(AK/K) and
. L . nH.£2~Blk, the elasticity-driven interaction can be esti-
wheren is the vortex densityA is the section of the sample | oi04 a5
perpendicular to the vortex direction, and
B wngty (q=Q) . (1+4|I’IK)2AKBZ 57)
“Pi = , it~ > — —,—b".
Fio(q)= f ho(p)e dp (q 52 int 2 K

0 (otherwisg, As we see, its order of magnitude coincides with what we
with Q any of the reciprocal-lattice vectorénote that obtained in Sec. Ill B from qualitative estimations, as well as
Aflzie*iQ-pi:nqu)_ As a result, the last term in E¢49) with the exact results that we obtained in Sec. IV for the
can be written as isotropic case. Let us mention that omittingdrin these

expressions, i.e., omitting the non-core contribution to the

n2 AR ) - 5 vortex-induced strain, they reproduce the previously reported
Fo= =7 |b'(OR5(0)+ 2 b'(Q)o(Q)|?|. (63 resuts!?
Let us emphasize that with this expression, one takes into B. H~H,,

account that both core and non-core regions act as strain

sources. It can be straightforwardly illustrated closétg. Let us now consider the VL's nea¢,. When doing so, it

Here, due to the large separation between vortices, the fundS convenient to use the _conventional dimensionlegs units
N 9 _p . . ) é|:r$1stead of those defined in Eq€l0). These conventional
tion hy in Eq. (50) practically coincides with the function units can be obtained from E¢4.0) by replacing¥ |2 with
associated with one single vort¢gee Eq.(12)]. Therefore a/b s

the functionhy(Q) varies slowly up toQ~¢"* and then Following Kogar?* one can easily obtain, now from the
rapidly drops to zero. So in E¢S3) it can be approximated  equations of equilibriun(5), the so-called Abrikosov identi-
by ho(Q)=hg(0) and naturally splits into core and non-core ties (see also Refs. 14,15, and)2k presence of strain they

contributions[see Eqs(16)]: read
ho(0)=m(1+4 Ink)|W4|2£%/2, (54) ®
e 1 HZ:HO__v (586)
limiting the sum overQ's up t0 QS & . 2k
Let us calculaté-, explicitly for the isotropic case. In this
case one has aij=a5ij and )\ijk|=(K—§,u)5ij5k| K_HO 1_2K2
+,u,(5ik5j| + 5”5“(), whereK and Moare the bulk and the P <(J)>+ 22 (w2>—aij(uijw>=0. (58b)
shear modulus respectively. Therefore
21K (Q=0) HereH, is a constant and is the squared modulus of the
b'(Q) :[ ) ’ (55  functionW, which is the solution of linearized equatiotts)
a’l(Kapa)  (Q#0), and (5b) (¥ =/we'X). Bearing in mind that the magnetic
whereK 43=K+4u/3, and Eq.(53) yields induction isB=(H,)=H,—(w)/(2«), from Egs.(58) one
can also obtain the following relationship:
n2_ a? Qmax a?
Fe|=——h§(0)(—+2 o 2k(k—B
2 K §70 Kyz (w)= —..( ) , (59
IBA_IBe

2 2 Qmax 2
=—n—'ﬁé<0>[ SR } §
2 3K(Ka3)  ¢=0 Kyss where  B.= _2K2ai£<uijw>/<w>2 and Ba=1+(2«2
Bearing in mind that from the Abrikosov identit$8a) it
follows that (H2)=B2+ ({w?)—(w)?)/(4«?), the free en-
ergy (42) can be rewritten as

a?h2(0) [ 4un? n)

=" 2<K4/3>( K @ (56)

where the sum over discre@'s has been replaced by inte-

gration (Eanflfsz). The terme«n represents a renor- - !

malization of the vortex self-energy, while the term? is p2 BAa, 1

the elasticity-driven interaction. F=B 22"t N (Ui ). (60
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Expressingu;; in the form (13) and taking into account that ui (o) =iS;(@)Gji(a) w(q), (613
|¥|%2=w, one finds that
. wherew(q) is the Fourier transform of the functian. The
€=~ ap\ijk{w), last term of Eq.(60) is now

1 - 1 2 G-l
E)\ijkl<uijukl>_E{)\ijkleijekl"'q#o i (Q)Ui(Q)Uj(—Q)}

1
=- E{Aijklk;ﬁklamneij<w>+i > Gi; () Gy () S ui(a) w(— Q)

q#0
1 . 1 B
=73 aijfij<w>+|§0 Si(Q)Ui(Q)w(—Q)} =- Eaij<uijw>: 4—:2<w>2- (62)
|
The free energy60) can be written as most important ones for the VL energies at low field$ (
<H.,). As a result of the proper inclusion of all strain
5 sources, the strength of the elasticity-driven interaction be-
Ba— Be (k—B)? tween vortices increases by a factor up~tdn®« compared
F=B*- P (w)?=B= =—r. (63 with the previously reported ones.
A e It is known since long ago that the observed correlations

between VL's and crystal lattices in dirty superconductors
cannot be explained without the elasticity-driven interaction

Let us mention that the form of this expression for the M0 ;
free energy differs substantially from that reported by Mira—.be'[Ween vortice$. This interaction has been proved to be

novic et al.in Ref. 12. The elasticity-driven interaction term |\r/T|1_E)ort§nt n glgalzbsupzrcon?uctors als%. tFOtL exa.”‘.p'e' the
that given by Eq(63) is several times smaller than the cor- S observedin Sgdo not correspond to the minimum

responding one in Ref. 12. The validity of E@3) can be of the London energy. In Ref. 11 Kogaat al. showed that

checked by noting that it reproduces the isotropic dase the dlfftgrencte mt the ITondon”eneiLgmsﬂ?f t(;‘ff two potssﬁl]e
expression(ll) in Eqg. (26)]. In contrast, the expression re- competing structures Is smailer than the dilierence in the

ported in Ref. 12 does nésee Sec. IV € The reason is that energies of the corresponding elasticity-driven interactions
it is obtained from an expression analogous to @¢), but that they calculated. As we have mentioned, Kogarl.

erroneousEq. (20) of Ref. 19]. Using Eqs.(16) and(12) of underestimated the elasticity-driven interaction between vor-

Ref. 12 in Eq.(20) of the same reference such an expressiorjfice$ because they_ assumed that 0 nly the vortex cores induce
strain but, even doing so, they pointed out the importance of

reads this interaction in NbSg In fact this is even more important
as we have shown in the present work, which should be
1 HZ2 b 1 taken into account especially in those cases in which previ-
:;f (g—§|\lf|4+ ajj Ui | W2+ 2 Nijia Uij Ui dv. ous estimates concluded that the London energy was the

most important one.
(64) V3Si might provide an example in which the latter case

One can see here that the tecmuij|llf|2 is taken into ac- takes place. In Ref. 26 it was claimed that igS¥ the con-
count twice: one time explicitly and another time implicitly tribution to the VL energy which is due to th@nderesti-
in the term—b|W|2/2 which arises as a result of the integra- mated elasticity-driven interactions between vortices can be
tion by parts performed at the beginning of this section.  neglected compared to the contribution due to the nonlocal
corrections to the London energy. But bear in mind ttat
the order of magnitude of these two contributions is the
same, as it was shown in Ref. 11 considering the vortex cores

We have revised the contribution to the VL energy whichas the only sources of strains, aig the elasticity-driven
is due to the vortex-induced strains, showing that essentiahteraction is considerably stronger than it was reported, as
corrections to the previous calculations are needed. The mogte have shown in this paper. So it is quite probable that in
important one is connected with the fact that, in higlsu-  V3Si, as well as in other superconductors with largethis
perconductors, not only do the vortex cores induce strains ielasticity-driven interaction between vortices is not only
a significant way; there also exists a significant contributionrcomparable, but even more important than the nonlocal cor-
associated with the non-core regions which are, in fact, theections to the London energy.

VI. CONCLUDING REMARKS
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APPENDIX

Let us check that the expressions in E21l) match one
each other at the boundaries of the magnetic-field regions
defined therein, with reasonable accuracy. As we alread
mentioned, this matching permits us to study the elastic e
fects in the whole region of the vortex state of isotropic

superconductors.

Recall first that the magnetic induction, as a function of

the magnetic field, is given B%
(

2¢q In-2 3o 0
VaAE T [4mE(H-Hy) ’
bo 4m\E(H—Hg)] -~
B= H—Hcl+8mﬁ[|n[ e }er} (1=11),
ch_H
H-————— (),
L (2k°=1)Ba
(A1)

(A1) one hasB={,H,. Therefore, taking into account the
relationship(23), one finds that

§1H§1
F - (1),
) R IN[87(vi)?(V3¢1In k)]
£+ (1-11).
8 In x
(A2)

S we can see, the value of the free energy given by both
expressions &, =H?2/(47) up to logarithmic corrections.
For H={,H,, where{,<1 is a new numerical factor,
according to the expressioiis-11) and(ll) in Eq. (A1) and
the relationship(22) one hasB={,H.,. Therefore, taking
into account the relationshif23), one finds that

2 2
42H02(§2+ In[47v /(ﬁgzn) (-1,

87 2k?
VL=
He( . (=07 (1)
87 | °2 2K? '

(A3)

Here we see that these two expressions give values of the
free energy that match each othEr;;,_:Hﬁzl(Sw).
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