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Abstract

We show that the elasticity-driven interaction between vortices in high-j superconductors, for magnetic fields not so

close to Hc2, is mainly due to a non-core contribution overlooked until now. Consequences of the accounting for this

non-core contribution when discussing correlations between vortex and crystal lattices are examined.
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1. Introduction

The elasticity-driven interaction between vorti-
ces has turned out to be a key point, for instance,

in the understanding of the observed correlations

between vortex lattices (VLs) and crystal lattices

(see Refs. [1–3] and the references therein). In this

paper we point out that, for magnetic fields not so

close to the upper critical field Hc2 in supercon-

ductors with large values of the Ginzburg–Landau

parameter j, previous calculations of this elastic-
ity-driven interaction between vortices notably

underestimate its strength. The assumption that

only the vortex cores induce strains leads to this

underestimation in previous calculations [1–3]. In

fact, all spatial variations of the order parameter
* Corresponding author.

E-mail address: levanyuk@uam.es (A.P. Levanyuk).

0921-4534/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.physc.2003.09.100
induce strain. At first sight, core regions seem to be

important sources of strain because here the order

parameter varies strongly. But one has to realize
that, as strain sources, the non-core regions

(smooth variations) might be even more effective if

their extension is large enough. It proves out that

in high-j superconductors, in which the super-

current regions are actually very extensive, the

major contribution to the vortex-induced strains is

due to the non-core regions.
2. Strain-induced attraction

2.1. Non-core contribution

We will start by showing that even neglecting

the vortex cores there exists a strain-induced at-

traction between vortices. Within Ginzburg–Lan-
dau theory the free energy per volume unit can be

written as (see, e.g., Ref. [4])
ed.
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where v is the volume of the system and
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HereW is the order parameter and a ¼ aðT � TcÞ is
the only temperature dependent coefficient, Tc
being the critical temperature. The elastic degrees

of freedom are taken into account in Eq. (2b),

where uik is the strain tensor, K and l are the bulk

and the shear modulus respectively, and summa-

tion over double indices is implied (see, e.g., Ref.

[5]).
The simplest way to work out the strain-in-

duced vortex attraction is following the method

given in Ref. [6]. To minimize the free energy over

the elastic degrees of freedom we distinguish be-

tween homogeneous and inhomogeneous defor-

mations [7]:

uijðrÞ ¼ �ij þ
i

2

X
k6¼0

½kiujðkÞ þ kjuiðkÞ�eik�r: ð3Þ

Here, �ij represents the tensor of homogeneous

deformations and uiðkÞ the components of the
displacement vector in Fourier space. Minimiza-

tion of Eq. (1) with respect to all elastic degrees of

freedom gives

Fel ¼ � r2

2K4=3

hjWj4i � r2

2K
4l

3K4=3

hjWj2i2; ð4Þ

where K4=3 ¼ K þ 4l=3 and h� � �i means volume

average.

Further minimization of Eq. (4) with respect

to W is not straightforward due to its non-

locality. However, if l ¼ 1 there is another
minimization procedure that avoids the treat-

ment of non-local equations. Following Ref. [6],

let us now consider this case and after that we

shall return to l 6¼ 1.
If l ¼ 1 the only possible deformation is a

homogeneous dilatation u. Therefore, the free en-

ergy (1) can be written as
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v

Z
aðuÞjWj2

"
þ b
2
jWj4

þ �h2

4m
r

����� � 2ie
�hc

A

�
W

����2 þ H 2

8p
þ K

2
u2
#
dv; ð5Þ

where aðuÞ ¼ aþ ru, u being a variational param-

eter. Fixing for a while this parameter, i.e. con-

sidering for a time a clamped sample, the form of

the equations of equilibrium reduces to that of the

Ginzburg–Landau equations [4]. Solving them one

obtains, in particular, the free energy density close

to the transition between the superconducting and
the mixed state in terms of the magnetic induction

B ¼ 4pB. For triangular VLs in high-j supercon-

ductors (ln j � 1) it can be written as

F ¼ FsðuÞ þ
K
2
u2 þB½Hc1ðuÞ � H �

þ mB3=4
0 ðuÞB5=4 exp

h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0ðuÞ=B

p i
; ð6Þ

where m ¼ 33=2ðp=2Þ1=2. The first two terms, where

FsðuÞ ¼ �a2ðuÞ=ð2bÞ, represent the free energy

density in the superconducting state at H ¼ 0. The

third term is proportional to the vortex self-

energy, where Hc1ðuÞ is the magnetic field at which
this self-energy changes its sign. The last term

represents the repulsive interaction between vorti-

ces that takes place at low flux densities. Here

B0ðuÞ ¼ /0=½2p
ffiffiffi
3

p
k2ðuÞ� defines the reference flux

density, where /0 is the flux quantum and

kðuÞ ¼ fmc2b=½8pe2jaðuÞj�g1=2 is the penetration

length of the magnetic field.

When calculating Hc1 the vortex core region can
be excluded. Doing so, i.e. taking Hc1ðuÞ ¼
f/0=½4pk2ðuÞ�g ln j, we shall reveal the effects

associated with the non-core contributions in fur-

ther calculations.

Let us now return to consider free samples.

Then Eq. (6) has to be minimized with respect to u.
The equilibrium deformation in the supercon-

ducting state is us ¼ ar=ðbeK Þ, where eK ¼
K � r2=b. In the mixed state there is, in addition, a

deformation um ¼ u� us as a result of the creation

of vortices. Since it is small close to the transition
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between the superconducting and the mixed states,

only lowest order terms are relevant and the um-
dependence of the repulsion term can be neglected

in Eq. (6). Thus, minimizing Eq. (6) with respect to

um we obtain

F ’ cFs þBðcHc1 � HÞ þ mðcB0Þ3=4B5=4

� exp
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cB0=B

p �
� dB2; ð7Þ

where c ¼ K=eK and d ¼ p½r2=ðeKbÞ�j�2 ln2 j for

high-j superconductors, i.e. ln j ¼ 2j2Hc1=Hc2 [4]

(here and hereafter the values Hc1, Hc2, etc. will be

refereed to the non-deformed state, u ¼ 0, if it is

not explicitly indicated).
Having this result in mind, let us reconsider fi-

nite shear moduli. The free energy (7) could be

obtained, in principle, from Eq. (4) with its coef-

ficients corresponding to l ¼ 1, i.e. r2=ð2K4=3Þ ¼ 0

and 4l=ð3K4=3Þ ¼ 1. Note that there is no essential

difference between the functional form of Eq. (4)

for infinite and finite l. So we conclude that the

free energy density of any isotropic type-II super-
conductor has the form of Eq. (7) with the corre-

sponding renormalized constants b0 ¼ b� r2=K4=3

and ðr2=KÞ0 ¼ ðr2=KÞ½4l=ð3K4=3Þ�.
The last term in Eq. (7) represents the non-core

contribution to the strain-induced attraction be-

tween vortices. Mention that this attraction dis-

appears if the shear modulus goes to zero.

2.2. Core contribution

Let us now deduce the core contribution to the

strain-induced attraction for l ¼ 1 in order to

compare it with the non-core one. Following Ref.

[2], we model the vortices as cylinders of radius n
(coherence length) of normal phase inside a su-

perconducting medium. Let us first consider a
clamped superconducting medium. To accommo-

date a normal cylinder inside this medium, the

cylinder should be deformed because of the dif-

ference between specific volumes of normal and

superconducting phases Vn;s. Such a deformation is

simply u0 ¼ ðVn � VsÞ=Vs (if l ¼ 1 only homoge-

neous deformations are possible). Let us now

consider a free sample designating as n the density
of cylinders (vortices). The elastic part of the free

energy density can be written as
Fel ’ npn2
K
2
ðu� u0Þ2 þ

K
2
u2; ð8Þ

where u is the deformation of the sample as a whole

and it has been taken into account that the bulk

moduli of both normal and superconducting phases

are approximately equal (K). Minimizing Eq. (8)

with respect to u we obtain the equilibrium defor-

mation of the sample: um ’ npn2u0. Therefore, the
equilibrium free energy has the contribution

Fel ’ npn2
Ku20
2

� n2p2n4
Ku20
2

: ð9Þ

The second term of Eq. (9) represents the attrac-

tion between vortices due to the core-induced

strain. Taking into account that n ¼ B=/0 and
u0 ’ ½H 2

c ðT ¼ 0Þ=ð4pKTcÞ�ðoTc=ouÞ (see e.g. Ref.

[2]), where H 2
c ¼ 4pa2=b and ðoTc=ouÞ ¼ r=a, this

second term in (9) can be written as

F attr
core ’ �d

H 2
c2 ln j

23j4H 2
c1

� �2

B2: ð10Þ
2.3. Comparison between core and non-core contri-

butions

For high-j superconductors one has

2j2Hc1=Hc2 ¼ ln j. Thus, the core contribution to

the strain-induced interaction (10) and the non-

core one [see Eq. (7)] are such that

F attr
core ’ ln�2 jF attr

non-core: ð11Þ

Because in type-II superconductors the typical

values of the Ginzburg–Landau parameter are

j ’ 10–100, the core contribution to the elasticity-
driven interaction between vortices is typically one

or two orders of magnitude smaller than that of

the non-core one, i.e. the non-core contribution is

the leading one.

Working out the appropriate calculations one

can see that this leading role of the non-core

contribution, revealed here for elastically isotropic

superconductors and magnetic fields close to Hc1,
also takes place in the most part of the vortex state

for both elastically isotropic and anisotropic

superconductors [8] (see Fig. 1). Mention that

when the elastic anisotropy is taken into account,

there exists a dependence of the attraction energy
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Fig. 1. Log–log plot of the coefficient of the attraction term

(/ �B2) in the free energy as a function of the magnetic

induction, taking into account (solid line) and neglecting (da-

shed line) the non-core contribution. The value of this coeffi-

cient at Hc2, which is the same in both cases, was taken as the

unity. The indicated regions (I): H � Hc1, (I–II): Hc1 � H �
Hc2 and (II): H � Hc2, correspond to j ’ 100 (note that

Hc1 ’ 10�4Hc2 in this case).
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on the orientation of the VL with respect to the

crystal axes. This dependence, being the same for

both core and non-core contribution, does not

alter the ratio between them (see Ref. [8]).
3. Discussion

We have shown that previous calculations of

the contribution to the VL energy due to the

vortex-induced strains need essential corrections.

The most important one is connected with the fact

that, in high-j superconductors, not only the

vortex cores induce strains in a significant way.
There also exists a significant contribution asso-

ciated with the non-core regions which are, in fact,

the most important ones for the VL energies at low

fields (H � Hc2). As a result of the proper inclu-

sion of all strain sources [8], the elasticity-driven

interaction between vortices increases by a factor

up to �ln2 j compared with the previously re-

ported ones.
It is known since long ago that the observed

correlations between VLs and crystal lattices in

dirty superconductors cannot be explained with-

out the elasticity-driven interaction between vor-

tices [1]. This interaction has been proved to be
important in clean superconductors also. For

example, the VLs observed in NbSe2 do not

correspond to the minimum of the London en-

ergy. In Ref. [2] Kogan et al. showed that the

difference in the London energies of the two

possible competing structures is smaller than the
difference in the energies of the corresponding

elasticity-driven interactions that they calculated.

Notice that Kogan et al. underestimated the

elasticity-driven interaction between vortices be-

cause they assumed that only the vortex cores

induce strain but, even doing so, they pointed out

the importance of this interaction in NbSe2. In

fact this importance is even more as we have
shown in the present work, what should be taken

into account especially in those cases in which

previous estimates concluded that the London

energy was the most important one (for instance

in V3Si, see Ref. [9]).
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