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We point out that the repeatedly reported glasslike properties of crystalline materials are not necessarily
associated with localized(or quasilocalized) excitations. In real crystals, optical and short-wavelength acous-
tical vibrations remain damped due to defects down to zero temperature. If such a damping is frequency
independent—e.g., due to planar defects or charged defects—these optical and short-wavelength acoustical
vibrations yield a linear-in-T contribution to the low-temperature specific heat of the crystal lattices. At low
enough temperatures such a contribution will prevail over that of the long-wavelength acoustical vibrations
(Debye contribution). The crossover between the linear and Debye regimes takes place atT* ~ÎN, whereN is
the concentration of the defects responsible for the damping. Estimates show that this crossover could be
observable.

DOI: 10.1103/PhysRevB.70.212301 PACS number(s): 65.40.Ba

It is generally accepted that, at low enough temperatures,
the specific heat of nonmetalic solids follows the Debye law
C~T3.1 Loosely speaking, it can be said that the Debye law
arises because of the thermal activation of the long-
wavelength acoustical vibrations according to the Bose-
Einstein distribution. Optical and short-wavelength acousti-
cal vibrations do not contribute significantly to the low-
temperature specific heat because their thermal activation is
exponentially suppressed. An exception is glasses, for which
a linear-in-T dependence has been known since long ago.
Such a linear dependence is usually ascribed to the existence
of the tunneling two-level systems postulated by Andersonet
al. and, independently, Phillips in the early 1970s.2 Up to
date, however, the true microscopic nature of these two-level
systems is unclear. A glasslike specific heat is observed in
strongly disordered crystals, which upholds the common be-
lief that in these crystals the above-mentioned systems there
also exist. “Anomalous” low-temperature specific heats were
also observed in a number of crystals with relatively small
concentrations of defects, but not in more perfect crystals of
the same composition—not in the same temperature range at
least(see, e.g., Refs. 3 and 4, and references therein). Apart
from the evident conclusion that these anomalies are related
to defects, no reliable explanation was found.

In this Report, we argue thata linear-in-T specific heat is
a natural low-temperature property of any crystal which con-
tains a small concentration of defects. The key points are(i)
that the optical and short-wavelength acoustical vibrations of
real crystals remain damped down to zero temperature due to
presence of defects and(ii ) that the contribution to the spe-
cific heat of these damped vibrations may be linear-in-T at
low enough temperatures. In the view of this, it is evident
that the contribution to the specific heat associated with these
optical and short-wavelength acoustical vibrations may pre-
vail over the (acoustic) Debye one at the lowest tempera-
tures. The rest of the paper is devoted to a more detailed
argumentation and to estimations.

Nowadays, the study of quantum effects in dissipative
systems is a topic of vivid interest. As a result of this activity,

the specific thermodynamic features of the damped harmonic
oscillator are now well understood(see, e.g., Ref. 5). It is
worth mentioning that these features have already been
proved relevant to explain some phenomena peculiar to vor-
tex lattices in superconductors. We refer, in particular, to the
significant contribution that vortons yield in the correspond-
ing low-temperature specific heat:6 vortons are acoustic
phonons in what concerns the dispersion law(they are con-
nected to acoustic vibrations of the vortex lattice), but optic
ones in what concerns their finite damping atk =0 (resulting
from the vortex viscosity). It is worth mentioning that in
incommensurate phases a similar situation takes place: pha-
sons in incommensurate phases are analogous to vortons in
superconductors. The low-temperature specific heat observed
in some incommensurate phases has also a peculiar depen-
dence on temperature.7 A discussion of the origin of such a
dependence will be published elsewhere.8 Here we shall con-
centrate on the low-temperature specific heat of “ordinary”
crystal lattices.

A detailed discussion on the free energy of a damped
oscillator can be found, e.g., in Ref. 5. To our purposes, it is
convenient to start by considering the case of a frequency-
independent damping. The asymptotic low-temperature ex-
pansion of the free energy then reads
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whereF0 is the ground-state energy,g is the damping coef-
ficient, andv0 is the natural frequency of the oscillator.9 It is
worth noticing the strong difference between this power-law
asymptotic expansion and the exponential one that, in accor-
dance with the Bose-Einstein distribution, is obtained for an
undamped oscillator.1 This is connected to the broadening of
the density of states that the damping provokes(the broad-
ening is such that there is no gap above the ground state; see
Ref. 10).

As we have mentioned, all vibrations of a real crystal
(acoustical and optical ones) are in principle damped due to
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defects down to zero temperature. Let us assume for a while
that this damping does not depend on the frequency as it is
considered in Eq.(1). At first glance, in accordance with this
expression, it will be necessary to take into account abso-
lutely all vibrational modes of the system when further com-
puting, for instance, the corresponding low-temperature spe-
cific heat. But a basic assumption when obtaining Eq.(1)
itself is that a certain separation between “relevant” and “ir-
relevant” degrees of freedom was possible: it is necessary
that a part of the system acts as a reservoir to produce dissi-
pation (damping).5 If Eq. (1) is used, some sort of “double
counting” then seems unavoidable. However, this is not com-
pletely true. Notice that, for a given finite temperature, there
always exist acoustical vibrations with small enough fre-
quencies for which the power-law expansion(1) makes no
sense.11 As a result, these acoustical vibrations with small
wave vectors give rise, in particular, to the well-known De-
bye contribution to the specific heat. They are just these
acoustical vibrations which act as the above-mentioned res-
ervoir necessary to provide the damping(see below).

The asymptotic expansion, Eq.(1), can then be used to
further estimate the contribution to the specific heat due to
“optical” vibrations(optical and short-wavelength acoustical
ones) in the low-temperature limit. Indeed at temperatures
T!"D /kB, where D is the characteristic frequency of the
corresponding “optical” branch, it is sufficient to retain the
lowest-order term inT. Thus, the contribution to the low-
temperature specific heat of a damped “optical” branchcan
be roughly estimated as

Cop ,
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whered is the characteristic interatomic distance. Here the
damping constantg has been assumed to be the same for the
whole “optical” branch. This “optical” contribution to the
specific heat will prevail over the acoustic one1 at T&T*
.sg /Dd1/2Q, whereQ="c3/2/ skBD1/2d3/2d, with c being the
velocity of sound, is of the order of magnitude of the Debye
temperature.

Let us mention that it is not completely consistent to
single out one “optical” branch and the acoustic reservoir
given that there is a “viscous” coupling between these “op-
tical” vibrations due to the damping(described by nondiago-
nal terms in the corresponding dissipative function). How-
ever, in order to reveal the linear-in-T contribution to the
low-temperature specific heat and to estimate this contribu-
tion in order of magnitude, this neglect seems permissible(in
the limit of small defect concentration the cross terms refer
to a finite number of “optical” vibrations: with the samek
but belonging to different branches). This imprecision is the
price we have to pay for the treatment of a complicated but
Hermitian many-body problem in terms of a set of one-
degree-of-freedom but non-Hermitian subsystems. Anyway,
valuable information has been obtained from this latter ap-
proach: after solving the mentioned many-body problem, the
corresponding density of states one must find should be simi-
lar to that of a damped oscillator.10

For further progress, it is necessary to estimate the corre-

sponding damping. This estimation, however, is far from be-
ing trivial even from experimental data. Inelastic scattering
and nuclear magnetic resonance experiments, for instance,
permit some estimations. But one must bear in mind that
these experiments provide partial information. From the
former it can only be extracted the high-frequency damping.
From the latter it is the low-frequency one, but “averaged”
over wave vectors. The damping of polar optic modes, in
particular, can also be estimated from experimental data on
dielectric losses. But these estimates will not be complete:
dielectric losses are connected to the damping of the long-
wavelength optic modes only. The theory on these dielectric
losses is well documented, so let us take advantage of this
point to illustrate thatthe defect-induced damping does not
vanish at zero temperatureand to make some estimates.

The problem of the dielectric losses in ferroelectrics due
to symmetry-breaking defects was theoretically studied, e.g.,
in Ref. 12 and reviewed in Ref. 13. The mechanism of loss
considered was the defect-permitted radiation of acoustic
waves when applying a time-dependent homogeneous elec-
tric field (a symmetry-breaking defect—e.g., an interstitial
atom—induces a local linear coupling between the electric
field, or polarization, and the strain). As a result one finds
that the low-frequency damping constant of a polar mode can
be inferred as

gsv → 0d , Nd3vD
1−nvn. s3d

Here N is the generalized concentration of defects,14 vD is
the Debye frequency, andn=0, 1, and 2 for planar, linear,
and point defects, respectively.(The defects are considered
strong defects in the same sense that in Ref. 13.) The same
results are obtained for non-symmetry-breaking defects.12,15

It is worth mentioning that the basic ingredient to obtain
this defect-induced losses is the accounting for the local
defect-induced changes in the properties of the correspond-
ing crystal—i.e., the local symmetry breaking and/or the lo-
cal changes in the material constants(inhomogeneities). This
is sufficient to “connect” the given vibrational mode with the
acoustic reservoir, which further leads to the corresponding
damping(already within the approximation of small defect
concentration). Hence this defect-induced damping is not re-
stricted to polar modes: in principle any vibration is affected
by these defect-induced local changes, and, consequently,
Eq. (3) is expected to be valid for nonpolar modes also. Let
us stress that the role played by defects, via these local
changes, is simply to permit the above-mentioned connection
between the oscillators and reservoir(no additional degrees
of freedom associated with any “internal dynamics of
defects” are considered).

As we see in Eq.(3), a frequency-independent damping of
the “optical” vibrations is obtained due to planar defects
sn=0d. According to the exposed above, this further gives a
linear-in-T contribution to the specific heat which is pre-
dominant at low enough temperatures. The temperature
crossover between this linear-in-T regime and the Debye one
is T* ,sNd3d1/2Q=sNplanardd1/2Q. For a concentration of pla-
nar defects corresponding to the typical dimensions of the
crystal blocks—i.e., one interblock boundary permm
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approximately—this crossover temperatureT* results in be-
ing a few kelvins.

The presence of charged defects in ionic crystals provides
another mechanism of damping for the corresponding polar
modes. The frequency dependence of the dielectric losses
expected in this case was analyzed in Ref. 16. This analysis
can be easily generalized in order to compute the frequency
dependence of the damping of a polar mode withk Þ0 in the
case of a realistic charge density distribution.(The choice of
the charge density distribution in Ref. 16 was somewhat ar-
bitrary; see Ref. 17 for further details). As a result, the damp-
ing coefficient of practically all the polar modes turns out to
be frequency independent in the limitv→0. This leads to a
linear-in-T specific heat at low temperatures, the orders of
magnitude similar to the those obtained above.

In the case of a frequency-dependent damping such that
g~v—e.g., for linear defects[n=1 in Eq. (3); see Refs. 12
and 15]—the damping merely reduces to a renormalization
of the optic masses. So in this case the contribution of “op-
tical” vibrations will be the “ordinary” one.

Let us finally mention thatg~v2 can occur due to both
point defects[n=2 in Eq. (3); see Refs. 12 and 15] and
strongly correlated charged defects in the case of polar
modes(see Ref. 16). Following, e.g., Ref. 5 it can be seen
that this further gives a Debye-like contributions~T3d to the
low-temperature specific heat.18 Let us stress that this
Debye-like contribution has a completely different origin
than the usual(acoustic) Debye one: it comes from damped
“optical” vibrations. It is small because of the smallness of
the defect concentration we are considering. But one can
speculate that, for high enough concentration of defects, this
contribution may be comparable to that of the acoustic
phonons.

As an experimental example in which the low-
temperature contribution to the specific heat due to damped
“optical” vibrations has probably been observed, it is worth
mentioning the low-temperature anomaly of Li3N reported in
Ref. 4. This anomaly cannot be interpreted as a proper glass
one (on the basis of the tunneling two-level model, for in-
stance) because such a interpretation would be inconsistent
with the thermal conductivity data: the magnitude of this
conductivity is too small and its temperature dependence is
somewhat different from that expected in a proper glass(no
plateau is observed atT*10 K).4 But, unfortunately, we are

not aware of the complementary experiments mentioned
above necessary to confirm(or to reject) that the low-
temperature specific heat observed in this particular case is
due to the damping of the corresponding “optical” vibrations.
We mention that these experiments(inelastic scattering,
nuclear magnetic resonance, etc.) must be realized for the
same sample because the anomaly is expected to be related
to the presence of defects. Anyway let us notice that
this low-temperature specific heat anomaly, such that
C,2310−5 J cm−3 K−1 at T.1 K,4 can be reproduced,
in order of magnitude, from Eqs.(2) and (3) with n=0,
a concentration of defectsNd3,10−4 (which could
correspond to one interblock boundary permm—i.e.,
N=Nplanard

−2,10−4d−3), and the typical values"vD /kB,
"D /kB,100 K.

In conclusion, we have shown thatthe low-temperature
specific heat of the real crystals may have a significant con-
tribution due to damped optical and short-wavelength acous-
tical vibrations. Such a contribution may split into linear-in-
T and Debye-like terms. The former will prevail over the
Debye contribution of acoustical vibrations for temperatures
&1 K for typical concentrations of defects of nominally pure
crystals. The latter might be comparable with the Debye one
for high enough concentration of defects. Let us stress that
these contributions are exclusively due to damped excita-
tions. This damping is due to defects, but defects themselves
do not introduce any additional degrees of freedom in our
considerations. If defect excitations are taken into account,
some additional contribution to the specific heat will be ob-
tained similar to that reported for glasses. We mention also
that, as we have shown, the low-temperature properties of a
real system may arise from nearly all of its phononic modes
(all “optical” vibrations of a real crystal contribute to the
corresponding low-temperature specific heat as we have
seen). This does not contradict the general point of view
according to which, even in glasses, it is accepted that only a
small number of phononic modes—i.e., the long-wavelength
acoustic ones—are relevant to the corresponding low-
temperature properties. But it indicates that the low-energy
excitations responsible for non-Debye contributions already
exist in nominally perfect crystals, having their origin in the
phononic normal modes.
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