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Low-temperature specific heat of real crystals: Possibility of leading contribution
of optical vibrations and short-wavelength acoustical vibrations
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We point out that the repeatedly reported glasslike properties of crystalline materials are not necessarily
associated with localizebr quasilocalizeflexcitations. In real crystals, optical and short-wavelength acous-
tical vibrations remain damped due to defects down to zero temperature. If such a damping is frequency
independent—e.g., due to planar defects or charged defects—these optical and short-wavelength acoustical
vibrations yield a linear-inF contribution to the low-temperature specific heat of the crystal lattices. At low
enough temperatures such a contribution will prevail over that of the long-wavelength acoustical vibrations
(Debye contribution The crossover between the linear and Debye regimes takes piate-aN, whereN is
the concentration of the defects responsible for the damping. Estimates show that this crossover could be
observable.
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It is generally accepted that, at low enough temperatureghe specific thermodynamic features of the damped harmonic
the specific heat of nonmetalic solids follows the Debye lawoscillator are now well understoodee, e.g., Ref.)5 It is
Cx=T31! Loosely speaking, it can be said that the Debye lawmvorth mentioning that these features have already been
arises because of the thermal activation of the longproved relevant to explain some phenomena peculiar to vor-
wavelength acoustical vibrations according to the Bosetex lattices in superconductors. We refer, in particular, to the
Einstein distribution. Optical and short-wavelength acoustisignificant contribution that vortons yield in the correspond-
cal vibrations do not contribute significantly to the low- ing low-temperature specific heBtvortons are acoustic
temperature specific heat because their thermal activation jshonons in what concerns the dispersion f&iey are con-
exponentially suppressed. An exception is glasses, for whicRected to acoustic vibrations of the vortex latfideut optic
a linear-inT dependence has been known since long agoenes in what concerns their finite dampingkat0 (resulting
Such a linear dependence is usually ascribed to the existeng®m the vortex viscosity It is worth mentioning that in
of the tunneling two-level systems postulated by Anderston incommensurate phases a similar situation takes place: pha-
al. and, independently, Phillips in the early 19708p to  sons in incommensurate phases are analogous to vortons in
date, however, the true microscopic nature of these two-leveduperconductors. The low-temperature specific heat observed
systems is unclear. A glasslike specific heat is observed ith some incommensurate phases has also a peculiar depen-
strongly disordered crystals, which upholds the common bedence on temperatufeA discussion of the origin of such a
lief that in these crystals the above-mentioned systems theigependence will be published elsewh&téere we shall con-
also exist. “Anomalous” low-temperature specific heats wereentrate on the low-temperature specific heat of “ordinary”
also observed in a number of crystals with relatively smallcrystal lattices.
concentrations of defects, but not in more perfect crystals of A detailed discussion on the free energy of a damped
the same composition—not in the same temperature range gécillator can be found, e.g., in Ref. 5. To our purposes, it is
least(see, e.g., Refs. 3 and 4, and references themgpart  convenient to start by considering the case of a frequency-
from the evident conclusion that these anomalies are relatéldependent damping. The asymptotic low-temperature ex-
to defects, no reliable explanation was found. pansion of the free energy then reads

In this Report, we argue thatlinear-in-T specific heat is
a natural low-temperature property of any crystal which con- m v (kgT)? 27 kgT\?
tains a small concentration of defecthe key points aré) F~Fo- 6wy g 1+ 5 \hay/ |’
that the optical and short-wavelength acoustical vibrations of
real crystals remain damped down to zero temperature due twhereF, is the ground-state energy,is the damping coef-
presence of defects ard) that the contribution to the spe- ficient, andwy is the natural frequency of the oscillafoit is
cific heat of these damped vibrations may be lineaf-iat  worth noticing the strong difference between this power-law
low enough temperatures. In the view of this, it is evidentasymptotic expansion and the exponential one that, in accor-
that the contribution to the specific heat associated with thesgance with the Bose-Einstein distribution, is obtained for an
optical and short-wavelength acoustical vibrations may preundamped oscillatdrThis is connected to the broadening of
vail over the(acoustig Debye one at the lowest tempera- the density of states that the damping provokés broad-
tures. The rest of the paper is devoted to a more detailedning is such that there is no gap above the ground state; see
argumentation and to estimations. Ref. 10.

Nowadays, the study of quantum effects in dissipative As we have mentioned, all vibrations of a real crystal
systems is a topic of vivid interest. As a result of this activity, (acoustical and optical ongare in principle damped due to
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defects down to zero temperature. Let us assume for a whilgponding damping. This estimation, however, is far from be-
that this damping does not depend on the frequency as it img trivial even from experimental data. Inelastic scattering
considered in Eqcl). At first glance, in accordance with this and nuclear magnetic resonance experiments, for instance,
expression, it will be necessary to take into account absopermit some estimations. But one must bear in mind that
lutely all vibrational modes of the system when further com-these experiments provide partial information. From the
puting, for instance, the corresponding low-temperature spdormer it can only be extracted the high-frequency damping.
cific heat. But a basic assumption when obtaining 8. From the latter it is the low-frequency one, but “averaged”
itself is that a certain separation between “relevant” and “ir-over wave vectors. The damping of polar optic modes, in
relevant” degrees of freedom was possible: it is necessanyarticular, can also be estimated from experimental data on
that a part of the system acts as a reservoir to produce disdiielectric losses. But these estimates will not be complete:
pation (damping.® If Eq. (1) is used, some sort of “double dielectric losses are connected to the damping of the long-
counting” then seems unavoidable. However, this is not comwavelength optic modes only. The theory on these dielectric
pletely true. Notice that, for a given finite temperature, therdosses is well documented, so let us take advantage of this
always exist acoustical vibrations with small enough fre-point to illustrate thathe defect-induced damping does not
quencies for which the power-law expansit) makes no vanish at zero temperatu@nd to make some estimates.
sensé! As a result, these acoustical vibrations with small The problem of the dielectric losses in ferroelectrics due
wave vectors give rise, in particular, to the well-known De-to symmetry-breaking defects was theoretically studied, e.g.,
bye contribution to the specific heat. They are just thesén Ref. 12 and reviewed in Ref. 13. The mechanism of loss
acoustical vibrations which act as the above-mentioned resonsidered was the defect-permitted radiation of acoustic
ervoir necessary to provide the dampigsge below. waves when applying a time-dependent homogeneous elec-
The asymptotic expansion, E¢L), can then be used to tric field (a symmetry-breaking defect—e.g., an interstitial
further estimate the contribution to the specific heat due t@tom—induces a local linear coupling between the electric
“optical” vibrations(optical and short-wavelength acoustical field, or polarization, and the strginAs a result one finds
oney in the low-temperature limit. Indeed at temperaturesthat the low-frequency damping constant of a polar mode can
T<hA/lkg, where A is the characteristic frequency of the be inferred as
corresponding “optical” branch, it is sufficient to retain the

lowest-order term inl. Thus, the contribution to the low- Hew— 0) ~ Nd%%,'”w”. (3)
temperature specific heat of a damped “optical” brancdin
be roughly estimated as Here N is the generalized concentration of defeétsyy is
the Debye frequency, and=0, 1, and 2 for planar, linear,
C ~ kg y kT ) and point defects, respectivelyThe defects are considered
P PBABA’ strong defects in the same sense that in Ref) TBe same

results are obtained for non-symmetry-breaking def&cts.

whered is the characteristic interatomic distance. Here the It is worth mentioning that the basic ingredient to obtain
damping constany has been assumed to be the same for théhis defect-induced losses is the accounting for the local
whole “optical” branch. This “optical” contribution to the defect-induced changes in the properties of the correspond-
specific heat will prevail over the acoustic drat T<T* ing crystal—i.e., the local symmetry breaking and/or the lo-
=(y/A)?0, where® =Ac3?/ (kgA¥?d®?), with ¢ being the  cal changes in the material constaithomogeneities This
velocity of sound, is of the order of magnitude of the Debyeis sufficient to “connect” the given vibrational mode with the
temperature. acoustic reservoir, which further leads to the corresponding

Let us mention that it is not completely consistent todamping(already within the approximation of small defect
single out one “optical” branch and the acoustic reservoicconcentration Hence this defect-induced damping is not re-
given that there is a “viscous” coupling between these “op-stricted to polar modes: in principle any vibration is affected
tical” vibrations due to the dampinglescribed by nondiago- by these defect-induced local changes, and, consequently,
nal terms in the corresponding dissipative functiodow-  EQ. (3) is expected to be valid for nonpolar modes also. Let
ever, in order to reveal the linear-M-contribution to the Us stress that the role played by defects, via these local
low-temperature specific heat and to estimate this contribuchanges, is simply to permit the above-mentioned connection
tion in order of magnitude, this neglect seems permisgible between the oscillators and reserv@io additional degrees
the limit of small defect concentration the cross terms refeof freedom associated with any “internal dynamics of
to a finite number of “optical” vibrations: with the sanke  defects” are considergd
but belonging to different branched his imprecision is the As we see in Eq3), a frequency-independent damping of
price we have to pay for the treatment of a complicated buthe “optical” vibrations is obtained due to planar defects
Hermitian many-body problem in terms of a set of one-(n=0). According to the exposed above, this further gives a
degree-of-freedom but non-Hermitian subsystems. Anywaylinear-in-T contribution to the specific heat which is pre-
valuable information has been obtained from this latter apdominant at low enough temperatures. The temperature
proach: after solving the mentioned many-body problem, therossover between this linear-inregime and the Debye one
corresponding density of states one must find should be simis T* ~ (Nd®)20 =(Nyanad)*/?0. For a concentration of pla-
lar to that of a damped oscillatéft. nar defects corresponding to the typical dimensions of the

For further progress, it is necessary to estimate the corresrystal blocks—i.e., one interblock boundary pem
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approximately—this crossover temperatdreresults in be- not aware of the complementary experiments mentioned
ing a few kelvins. above necessary to confirfor to rejecj that the low-

The presence of charged defects in ionic crystals providetemperature specific heat observed in this particular case is
another mechanism of damping for the corresponding pola@lue to the damping of the corresponding “optical” vibrations.
modes. The frequency dependence of the dielectric losséde mention that these experimen(melastic scattering,
expected in this case was analyzed in Ref. 16. This analysigUclear magnetic resonance, tmust be realized for the
can be easily generalized in order to compute the frequenc?ame sample because the anomaly is expected to be related
dependence of the damping of a polar mode With0 inthe ~ f0 the presence of defects. Anyway let us notice that
case of a realistic charge density distributigfine choice of ~this _low-temperature ~specific heat anomaly, such that
the charge density distribution in Ref. 16 was somewhat ar~2X 10> Jcn®K™ at T=1K," can be reproduced,
bitrary; see Ref. 17 for further detail#\s a result, the damp- in order of m_agnltude, from Eg35(2) ai}d 3 \.N'th n=0,
ing coefficient of practically all the polar modes turns out to@ Concentration of - defectsNd®~ 10" (which could
be frequency independent in the linat— 0. This leads to a co_rrl\?spongz tcio_cig_eg mter(s)lorc]k bonndlary | pﬂn_/"ke"
linear-in-T specific heat at low temperatures, the orders ogf;l&/kp'?ﬂafool ), and the typical valuesiwp/ks,

. . ; 5 .
magnitude similar to the those obtained above.

In the case of a frequency-dependent damping such th@tp

y*w—e.g., for linear defecttn=1 in Eq. (3); see Refs. 12 yiption due to damped optical and short-wavelength acous-
and 13—the damping merely reduces to a renormalizationca) viprations Such a contribution may split into linear-in-
of the optic masses. So in this case the contribution of “0pt gng pebye-like terms. The former will prevail over the
tical” vibrations will be the “ordlnazry" one. Debye contribution of acoustical vibrations for temperatures
Let us finally mention thaty= »® can occur due to both  —1  for typical concentrations of defects of nominally pure
point defects[n=2 in Eq. (3); see Refs. 12 and 18nd 1y qials. The latter might be comparable with the Debye one
strongly correlated charged defects in the case of polafy; high enough concentration of defects. Let us stress that
modes(see Ref. 1§ Following, e.g., Ref. 5 it can be seen these contributions are exclusively due to damped excita-
that this further gives a Debye-like contributionT") to the  iong This damping is due to defects, but defects themselves
low-temperature specific hedt. Let us stress that this g5 not introduce any additional degrees of freedom in our
Debye-like contribution has a completely different origin considerations. If defect excitations are taken into account,
than the u_suad_acousth Debye one: it comes from damped gome additional contribution to the specific heat will be ob-
“optical” vibrations. It is small because of the smallness ofi5ined similar to that reported for glasses. We mention also

the defect concentration we are considering. But one Cafhat as we have shown, the low-temperature properties of a
speculate that, for high enough concentration of defects, thigg) system may arise from nearly all of its phononic modes

contribution may be comparable to that of the acoustiqq “optical” vibrations of a real crystal contribute to the
phonons. corresponding low-temperature specific heat as we have

As an experimental example in which the low- seep This does not contradict the general point of view
temperature contribution to the specific heat due to dampegccording to which, even in glasses, it is accepted that only a

“optical” vibrations has probably been observed, it is worthgmail number of phononic modes—i.e., the long-wavelength
mentioning the low-temperature gnomaly ofMireported in  g-qustic ones—are relevant to the corresponding low-
Ref. 4. This anomaly cannot be interpreted as a proper glaggmperature properties. But it indicates that the low-energy
one (on the basis of the tunneling two-level model, for in- excitations responsible for non-Debye contributions already

stancg because such a interpretation would be inconsistentyist in nominally perfect crystals, having their origin in the
with the thermal conductivity data: the magnitude of th'sphononic normal modes.

conductivity is too small and its temperature dependence is
somewhat different from that expected in a proper glass We wish to thank S. Vieira, F. Guinea and especially M.A.
plateau is observed at= 10 K).* But, unfortunately, we are Ramos for useful discussions.

In conclusion, we have shown thdie low-temperature
ecific heat of the real crystals may have a significant con-
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