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Low-temperature structural phase transitions:
Phonon-like and relaxation order-parameter dynamics
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A theoretical study on low-temperature structural phase transitions is presented, in which both phonon-like
and relaxation order-parameter dynamics are contemplated. While the first limiting case has been considered
previously, the second one is studied here. Attention is put on the low-temperature asymptotics of the tem-
perature dependence of the generalized susceptibility. In the relaxation case, it is#zﬁﬂ]ﬁdTﬁ)‘l for
temperature-independent relaxation times in a broad region of the temperature-pressure phase diagram. In
contrast to that obtained in the phonon-like case, this asymptotics is not modified by long-range interactions
(dipolar forces, piezoelectric effect, etc.
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[. INTRODUCTION shall study both limiting cases of phonon-like and relaxation
order-parameter dynamics in structural phase transitions,
Structural phase transitions are usually divided into twopaying attention to possible differences in the corresponding
classes: displacive and order-disorder ofse®, e.g., Ref.)L  anomalies. To do so, we shall use a semiphenomenological
The labels refer to limiting cases, but still the division is approach in which lowF phase transitions are described
convenient. Among other features, it points out the orderwithin a continuous media theory. Within this formalism, we
parameter dynamics: phonon-like in the former and relaxshall assume that relaxation is characterized by a single phe-
ational in the latter. By varying a control parameter, e.g.,nomenological parametéa viscosity coefficientdescribing
pressure or chemical composition, the corresponding transthe simplest case of wave-vector- and frequency-independent
tion temperature can virtually be driven to zero in both casesdamping. To determine the microscopic nature of such a
Well known examples are SrTiQdisplacivé) and KH,PO,  damping is a very difficult task that is beyond the scope of
(order-disordel). The theory of lowT displacive phase the present worksince it is matter of a full microscopic
transitioné-" has been developed a long time ggee Ref. 8 theory). Thus its temperature dependence, for instance, is
for a recent review However, the theory concerning low- assumed to be obtainable from the experiments. In the fol-
order-disorder transitions is still lacking. lowing we shall consider a temperature-independent damp-
It is worth mentioning the possibility that, depending oning for the sake of illustration, although this dependence
the temperature regime one considers, the order-parameteould modify final formulas in a trivial way.
dynamics of a given transition may evolve from one of the It is worth mentioning that the lack of studies dealing with
above mentioned limiting cases to another one. Let us correlaxational dynamics in low- structural phase transitions
sider, for instance, a relaxational one. With lowering of thesometimes give rise to some confusion. In Ref. 12, for in-
transition temperature this dynamics may convert into astance, it is reported the low-thermal anomaly of the di-
phonon-like case because of, e.g., the increasing importanedectric constant occuring in prototypical order-disorder sys-
of tunneling?® But quantum effects may be important before, tems(KH,PO, and KD,PO,). An order-parameter dynamics
if it actually exists, such a conversion takes pl&tExisting  of relaxation type is very possible at these temperatures.
theories on lowF structural phase transitiohs$ are therefore  Nevertheless, the authors analyze the experimental data on
clearly insufficient for interpreting these cases, as far as thethe basis of models in which this relaxation is completely
are restricted to phonon-like dynamics, i.e., they neglect angbsent? On the basis of corresponding discrepancies be-
damping. The aim of this paper is just to account for thistween theory and experiments, their striking conclusion that
damping and, ultimately, to describe IoWstructural phase a classical order-disorder transition becomes displacive at
transitions with relaxational order-parameter dynamics. low temperatures is therefore unjustifiezbe below
The importance of the order-parameter dynamics inTow-  In this work, we focus our attention on the anomalies of
phase transitions is due to the intimate connection existinthe generalized susceptibility.e., the dielectric susceptibil-
between statistics and dynamics in quantum systems. Thisy when considering ferroelectricsassociated with low-
has been noticed, for instance, in magnets. Here variouyshase transitions because of current experimental int&rest.
types of order-parameter dynamics have been revealed, atdbvertheless, a theoretical framework is provided according
much attention has been paid to the role that these dynamit¢s which all other anomalies can be obtained. The paper is
play in the corresponding lovi-transitions(see Ref. 11 for a organized as follows. Section Il has a pedagogical character,
recent review. As we have mentioned, different types of and here we consider a simple model of one-component
order-parameter dynamics are also possible in Tostruc-  order-parameter dynamics in which long-range forces are ne-
tural phase transitions. Here, in contrast, only the phononglected. It serves us to introduce the method to include re-
like dynamics has been studied until now. In this paper, wdaxational dynamics when studying low-structural phase
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transitions. By this method we first reproduce the results oft as a constant for the sake of simplicity. Thermal fluctua-
the existing(phononig theory, and then extend this theory to tions are described by the random fidid In the classical

the relaxation case. We shall do it in two different ways. Onecase it is such that

of them consists of calculating the response function from L 1 , ,

the nonlinear equation of motiaisec. Il A), and the other is (h(r,)h(r’,t")) = Zypalr —r") &t -t), 3)

by computing the free energiSec. 11 B. In Sec. Il we  \heres 1=ksT and(--) denotes the statistical average.
improve the model by accounting for acoustic phonons. In | et us express the order parameter as a Fourier transform:
Sec. IV we shall focus our attention on KDP-type systems. I, ==, [dop, 5 el Within a first approximation in
addition to considering here the relaxation case of the ordethe anharmonicity, the inverse of the static susceptibility as-

parameter dynamics, we revise the phonon-like case becauggiated with the macroscopic degree of freed&m0) can
we found that the correct low-temperature asymptotics of thg s t5ken as

temperature dependence of the susceptibility is different
from that previously reported. i
Xt=a+302 | do(mwnr-o)- (4)
Il. SIMPLE MODEL “
The average in this expression can be computed by using the

Suppose that the phase transition at zero temperatuif omic susceptibility in the harmonic cade=0):

takes place because of a change in pressure. Integrating out

all degrees of freedom but the critical ones, the effective Ok w) = 1
ggtentlal energy per volume unit of the system can be written g pl 04(K) — 0 - i yow]
a b c =- - ! - , (5)
U= f (Eﬂu b e Sy n)z)dr @ oo+ In(K) ][0+ N (K)]

wherew?(k)=(a+ck?)/ pe, y=7p, and
(it is assumed that the system has unit volirktere 7 is the e(H0=( Ve v=71pe

order parameter ané&=a,(p—p.) is the only pressure- 1 a9

dependent coefficienp, would correspond to the phase tran- A1 o(K) = E{Yi i[4ws(k) = 12} (6)

sition pressure in the classical case, i.e., if the ions would

have infinite masses and therefore quantum fluctuations wei/e then have

suppressed. Real phase transition pressure is different and

will be calculated below. yl=za+
Let us here make a comment relative to fluctuations. It is (2m)®

frequently said that, while usudhigh-T) phase transitions . - . . .

are due to thermal fluctuations, those occurring at low tem- Although this analysis IS strictly classical, it has. been

peratures are due to quantum ones. The term “quantum pha§.@owr.1 that the corresponding fully quantum mechanical ex-

transition” seems then to be synonymous with [dvphase pression follows merely with the replacemerisT

transition. This makes sense for some syst&nsyt it is — (hw/2)coth%fw/2) (see, e.9., Refs. 14 and)1SVe then

quite confusing for others. Among these others we have judtaVe

the structural ones. In fact, as we have pointed out, a Zero- 7 dk fo

dw

0 mTw

dk [, 2kgT
f £ Im YOk w).  (7)

structural phase transition is perfectly imaginable without Y l=a+— o) dw Im xO(k, w)coth( Bw/2)
any quantum fluctuation: A crystal with infinite-mass ions mJ (2m)°Jo

may change its structure by applying pressure in accordance 1 K 1
with Eq. (1). This observation does not mean, as we shall see —a+—
below, that quantum fluctuations and/or quantum statistic Bpe ) @m)® . vh+ (vl y+ 02K
play no role in lowT structural phase transitions. 5 &K 1
Y e
A. Generalized susceptibility BpcJ (2m)°\ 2wg(K)
Let us first calculate the static generalized susceptibility L A MK - (1 ”\z(k)/”)) ®)
following a standard way and considering the classical case. A1(K) = No(k) ] '
The equation of motion for the order parameter can be writ- L
ten as wherev,=2mn/(AB), v=v4, and they function is the loga-
rithmic derivate of the gamma functiofirhe infinite sum in
pen+yn+an+by®-cviy=h, (2)  the second form of Eq8) appears as a result of integration

. . . . . - in the complexw plane
wherep. is an optic density ang a “viscosity coefficient.” It P P 1

is assumed that such a viscosity arises because of the cou-
pling between the order parameter and other degrees of free-
dom not considered here explicitly. Consequentisnay de- If there is no dampingy=0), we havex;=-\,=iw.. The
pend, e.g., on temperature. But in the following we shall takeresulting expression in Eg8) is

1. Phonon-like dynamics
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. 3hb N[w(K)] B. Generalized susceptibility revisited: A method for further
=at <—=k2dk, 9 i
X ~= & 42p, f wou(K) 9 calculations

Let us now reproduce the above results, but follow a dif-
ferent method. The starting point is now the calculation of
X 3%b K2dk the Landau potential no matter what the order-parameter dy-
ap=a+ 8.2 f ®’ (100  namics is, i.e., the free energy as a function of the critical
Pe ) @e macroscopic degree of freedom. Once this Landau potential
andn(w)=[exp#Bw)—1]"* is the Bose-Einstein distribution is obtained, all the anomalies associated with the Tow-
function. Equation9) coincides with the corresponding ex- structural phase transition under consideration can be com-
pression reported in Refs. 5 and 6. puted. However, as we have mentioned, we shall restrict our-
The transition pressure at zero temperature is such th&€lves to calculate here the one with the generalized suscep-
a,,=0, instead 0&=0. This renormalization of the transition tibility. .
pressure is due to zero-point fluctuations. The critical fre- Letus now express the order parameter as a Fourier trans-
quenciesw (k) are also renormalizated in such a way, butform: #7(r,t)=2,n()€*". Thus, Eq.(1) can be rewritten
one has to consider higher-order corrections to obtain it exshowing explicitly its dependence on the above-mentioned
plicitly. Below we shall assume thai.(k) represents these Mmacroscopic degree of freedom:
renormalized frequencies. Thus we reproduce the vanishing
of the optical frequencyw.(0) that takes place within this U=Uy(mo) + > Kk, 70)
model as a result of the phase transition, i.e., the softening of K£0

where

|2 +bmy 2 memer i

kk'#0
the optical branch. 5
Far from th transition p0|r[kBT<_ﬁwc(0)] the inverse of o S T T Dt (14)
the susceptibility has an exponential dependence with tem- 4

k.k’ k"+0
peraturexT¥%exd —fw.(0)/ (kgT)]. It is because of the “in- ’

efficiency” of the thermal activation of the optical phonons where
due to the hardness of this branch. The softening of the
branch associated with the transition increases the “effi- Uq )_g 2. D 4 (15)
ciency” of this thermal activation. Thus, close to the transi- o) =570 4 o
tion [kgT>%w.(0)] the temperature dependence of the in-
verse of the susceptibility becomed?.
pHbIy K(k, 76) = a-+ 3b72 + clé. (16)
2. Relaxational dynamics The equations of motion for the Fourier components of

. e the order parameter can be written as
In the pure relaxation limit(p,—0) we have \;(K) P

~w k) and Ak =7y-w.k), where w.(k=wiK)/y
=K (k)/y then describes the inverse of the relaxation times in
the symmetric phasgsee Eq.(2)]. In this case, the loWl-  where w?(k, 70) =K (K, 70)/ p.. Here we have neglected the
asymptotics of EQ.(8) can be obtained by using the contribution given by the last two sums in E(L). Such
asymptotic expansion of thg function (it will be valid over  action is possible by virtue of a weak anharmonicity. But
most of the integration intervalThus we get note that actually we do not neglect this anharmonicity at all:
1o 4 CT? 11 It is responsible for the dependence of characteristic frequen-
X Brel ' (1) cies w. on 7, The anharmonicity that we are partially ne-
where glecting [for instance, by omitting the last two terms in Eq.
(14)] may give some contribution to the relaxation that van-

M+ Y+ 03K, m0) 7 = 0, (17)

* 3fib 2 ishes at zero temperatut®Accordingly v may depend on
Ge =T 27733,f K= Inl y/w (k) Jdk, (12 temperature and/or wave vecthkr But as before we shall
take it as a constant.
k3 2
C= Bb~f k2dk. (13) 1. Phonon-like dynamics
27hy ) wi(K)

o N Let us present the method assuming first that the order-
In the phonon case, the vicinity of the phase transitionyarameter dynamics is phonon-like. If the anharmonicity is

increases the thermal activation of phonons. This leads t@eak, the equations of motion for the Fourier components of
different behaviors in the temperature dependence of the sughe order parameter can be written as

ceptibility depending on the distance from the transition

point. In the relaxation case, however, the distance from the M+ wﬁ(k, 7007 = 0. (18)
transition point is not so decisive for the thermal activation.

In consequence, only the T? behavior is obtained in the Within this approximation the system reduces to a system of
low-temperature regime of the relaxation case for adecoupled harmonic oscillators. So its free energy can be
temperature-independent viscosity coefficient. written ag4
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1
®(770) = Up(70) + /—32 In{2 sint{ % Bw(k, 70)/2]}
k

hwe(k,
= Ug(n + 3, e
k

1
+ E% In{1 - exd~ % Bwc(K, 7o) T} (19

All degrees of freedom but that associated wighare inte-

grated out in this potential. However, it describes nonequi

librium states of the system just because, at this pajnhas
a nonfixed value. Then one has to realize that what(fE®).
represents is just the Landau potential of the system.

PHYSICAL REVIEW B 70, 064104(2004

The inverse of the susceptibility in the symmetric phase
can be calculated from E@24) by differentiating with re-
spect toz,. Noting that\; 4k, 7) satisfy the relations

A(K) + N o(K) =, (253

MON(K) = wZ(K), (25b)

[Egs.(25) are the relations existing between the coefficients
and the roots of the algebraic equatioh- YA+ w2=(A—\,)
X(A=\p)=0, i.e., the Vieta relations for the roots of such a

equation(see, e.g., Ref. 28 and bearing in mind Eq$20),
it is easy to see that

We are now in a position to reproduce all the anomalies

associated with the phase transition following well-known
proceduresd.Let us consider the anomaly of the generalized

susceptibility y. In the symmetric phase we hayel=®"

z(a2q>/ang),70=0 (hereafter primes denote partial differenti- Thepn we further get

ating with respect tay,). Bearing in mind that

wi(k) =0, (209
w](K) = 3b/[ pewc(K)], (20)
from Eq. (19) one finds that
1, 3P J nfw(K)] ,
X —aph+4ﬂ2pc oK) k-dk, (21
where
. 3hb k2dk
Gn=at 87%p. f w(K)' (22

andn(w)=[exp(zBw)- 1]t is the Bose-Einstein distribution
function. (Summation over wave vectors has been replace%r

by integration: =, ~ (27)"3fdk.) Equation (21) coincides
with the one obtained in Sec. 1A 1

2. Relaxational dynamics

Let us now calculate the low-temperature asymptotics o
the temperature dependence of the susceptibility when th
motion of the order parameter includes some relaxationr
Similar to the asymptotics expressed in Sec. Il A, let us con

sider the equation

e+ ¥+ 0K, 70) i = 0. (23

The system is therefore a system of decoupled damped har-
monic oscillators. Making use of the partition function of
such damped oscillatot$,the Landau potential can be ob-

tained. It reads
1
D(79) = Ug(mp) + EE {In 72 BIN1(K, )Mo (K, 70) 1M
k

= INTL +Nqy(K, 1)/ v] = InT[L +No(k, 70)/ v]},
(24)

wherel is the gamma function anil; 5k, 7o) are given by
Eq. (6) with w (k) — w.(k, 7).

N =25k =0, (263)
i 6b
R T WO T
g, 3 J 1
X Bpe ) | 20700
+ YL+ MKv] = Y1+ 0 (K) 2] Kdk.  (27)

V[N 1(K) = oK) ]

One can see that the expression obtained here by calculating
the Landau potential of the system coincides with ).
Consequently, the low- asymptotics of Eq.(27) in the
phonon-like and relaxation limiting cases match with those
given in Sec. Il A1 and Il A 2, respectively.

Ill. STRUCTURAL NONFERROELECTRIC TRANSITIONS:
ACCOUNTING FOR ACOUSTIC PHONONS

In any system, there always exists a coupling between the
der parameter, and the strain tensay; via the termz2u,
in the potential energy, i.e., the striction effect. As a result of
this coupling, acoustic phonons give a contribution to the
thermal anomalies associated with I@wstructural phase
ransitions which may be significant because acoustic
Ehonons are excitations of low energy. So let us improve the

bove studied model by accounting for the striction effect.
hus the model can describe qualitatively nonferroelectric
phase transitions.

Taking into account the striction effect, the potential en-

ergy can be written as

_[(a .. b, C 2, 5 K 2)
U f(z" 7 +2(V77) ot dr, (28
where « is the striction coefficient the bulk modulus and

v the dilatation of the systenw=u,;). We shall take into
account the anharmonicity within the same approximation as
in the preceding section. Thus, this potential energy can be
written in Fourier space as

1
U =Uqy(7g,€) + > > ICij (K, 70, €) & &« (29

k#0

(summation over double indices is impljedvhere
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a+ ae b K
Uo(, €)= =~ 6+ 7o+ 5 €, (30)
with e being the homogeneous dilatation:
a+3bni+aet+ck® iank
Kij (K, 170, €) = ( 0 02 (31)
—ianyk pvik

with p being the density of the system amdhe longitudinal
velocity of sound, and& =(7,u), with u, being the

BN, (K, mo) N o(K, o) N3(K, )N 4(K, 770)]1/2

PHYSICAL REVIEW B 70, 064104(2004)

k-Fourier component of a longitudinal acoustic displace-
ment.

The system is now a system of linearly coupled harmonic
oscillators. Let us consider that relaxation enters in the dy-
namics of the order parameter only. If this relaxation is simi-
lar to that considered in the preceding section, i.e., if it is
characterized by a viscosity coefficiéptthe partition func-
tion of the system can be calculatesbe Ref. 1Y, From this
partition function we can write down the Landau potential of
the system:

D(770) = Uo( 70, €)

1
z%{

where the sef\;} is such that

M+N+ N3+ =7, (333

MAo+ Aohg+ Aakg + Aghg + Mhg+ Aok g = 0f + oof,
(33b)
MAoNg + Nahghg + Aahahi + Nihghg = yof, (330
AAoAgh, = wiwf — T, (330d)

with - wZ(K, 70)=K11(K, 70)/ pe,  wn(K)=vik, and f(k, 7)
=(anok)?/ (pep). Let us mention that Eq$33) are the Vieta
relations for the roots of the equation

f=0.

M= W8+ (02 + 0N = Yo\ + w20l - (39

The characteristic frequencies of the system are therefore

=i\

To our purposes, the value of the macroscopic degree q

freedome can be calculated by minimizing E¢30). After
doing so we find that

by
Uo(mo) = 770 + Z 7701 (35
K1a(k, 770) = @+ 3by 775 + ¢, (36)

whereby=b-a?/(2K) andb;=b-a?/(6K).

(32

w(K) i=1

4
- > InTT1 +\(k, no)/y]} ,

1

Ni(k)=- —(ch(k) e(K) =

.I:/r(k) )
A1(K) = Ao (k)

N(K) + o (K)
(37)

where it has been taken into account that,(k) =iw(k).
Similar expressions fon} 5 (k) are also obtainable from
Egs. (33). Moreover the root9\1,2(k) satisfy the relations
(25). Bearing these relationships in mind we find that the
inverse of the susceptibility, in addition to E(1),'° has
now the contribution

J (k) { 1 202(K)
R I R NG Y]
%athw ﬂ“h@%)
N+ w2k) N3(K) + wl(K)
202(K) YL +ie (/]
var(K) m([xﬁk>—iwmkn[xxk>—iwmw])}“%k'
(39)

In the purely phononic casg:=0 (\;=\,=iwy), Eq.(38)
duces to the already known res@it

. ha N[w(k)]+ 1/2
A== 2 2 2
2m)%ep J \ (K[ wg(K) = of(K)]

_ nloy(]+1/2 ) i
(W[ 02K — (K] '

(39

This contribution yields a temperature dependence of the in-
verse of the susceptibilitye T%. This is the leading one far
from the transition poinfkgT <% w(0)]. Close to the transi-

Let us now calculate the generalized susceptibility of thetion [kgT> fw.(0)], however, the most important contribu-

system in the symmetric phage,p=0) following that ex-
pressed in Sec. Il B. Expressions for the derivates of\the
with respect tor, are then required. From Eq®3) one can

tion «T? is obtained from Eq(21).
Substituting the asymptotic expansion of the psi function
into Eq.(38) we get its lowT behavior in the relaxation case

easily see that; (k)=0. For\{(k) one finds that, for instance, (y#0, p.— 0):
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Axt=Aa* + ACT?, (40)

where Aa* is a constant andAC=—{a?/[3b,(K+4u/3)]}C

PHYSICAL REVIEW B 70, 064104(2004

1
U =Ug(7no,€) + EE Cij (K, 70, ) & k&) -k (42
k#0

[see Eq.(11)]. In this case, the importance of acoustic Where

phonons is diminished. This is natural because, due to the a+ag ,
relaxation, the dynamics of the order parameter can be acti- Up=——

vated even far from the transition point.

IV. PIEZOELECTRIC EFFECT

Let us now study lowF phase transitions taking place in

b N
770+Z7/61+d770€xy+§€ﬁ+/~’“€i2 (43

2 A
with € representing the tensor of homogeneous strains:

Koo=a+ 3b73+ ag +clk, (443

Ko1 = K1o=i(amngky+ dk/2), (44b)

KDP-type systems. In addition to the striction effect, a linear
coupling between the order parameter and one of the com- /Coz:/C;o: i(amnoky, +dk,/2), (440
ponents of the strain tensor is present in these systems, i.e., a

piezoelectric effect. The role that this piezoelectric effect

Kos= Kzo=ianmk,, (444d)

plays in the corresponding transition can be revealed consid-

ering the potential energy

a b c a
U= SR+ A= (V)2 + Zu 2
J(z” 27 (VT Sw

A
+dey77+§Uﬁ+MUij>dr, (41)

whered is the piezoelectric coefficient is the shear modu-
lus, andA=K+2u/3 (for the sake of symplicity, the elastic
anisotropy has been taken into account partjallyithin the

Ki; = plodk?s; + (i -vdkk] (,j=1,2,3, (44e

with v, being the transversal velocity of sound; aggd
=(7,Uy), with u, being thek-Fourier component of the
displacement vector. Dipolar long-range interactions that
also take place in thesgerroelectricy systems have been
neglected. The possibility of such a neglection is explained
below.

Let us assume, as in the previous section, that if there
were no coupling between the order parameter and the elastic
degrees of freedomw=d=0), the relaxation would be
present in the order-parameter dynamics only. With this re-

same approximation in the anharmonicity as in the previougaxation, characterized by a viscosity coefficigptthe Lan-

sections, in Fourier space this can be written as

dau potential can be written as

6

D(70) =Up+ —

12 n 71 BIN1(K, o)\ a(K, 7o)\ 3(K, 7o)\ a(K, m0)Ns(K, m0)N6(K, 70)]H2

=2 InC[L+N(Kk )Vl [, (45)

Bk o;(K) (k) -1

where the sef\;} corresponds to the roots of the equation

|2+ wtz))\4 - (w|2 + wtz)y)\s + |:cu§(w|2 + wtz)

ol + g+ 20 I\% - ol Wl Y\ + wlof Wl + g+ go]

A= WS+ (w2 + w
+ (1)|2
+ 2007 =0, (46)

with w§=IC00/pC, o =v K w=vk, and

d 2_ .2

S im0 e dkkkk, (478

Cli
d 2 2

0= - —[ankk, +d(I& + K2)/4], (47b)
PcP

20,= — P (anok? + dkk,). (479

PcP

The values of homogeneous strains can be determined by
minimizing Eq.(43). After doing so we find that

a+d%(4u) b
ozTﬂg*'fﬁé- (48)

ICO(): a-+ b177(2) + Ckz. (49)

As we have seen in previous sections, zero-point fluctuations
yield a renormalization of the coefficiet But note that,
due to the piezoelectric effe¢tl # 0), this renormalized co-
efficient a* does not vanish at th&=0 phase transition: it
takes the valuea;:—dzl(4ﬂ). In consequence, the optical
frequencieqor inverse of relaxation timgsvhich enter the
above expressions do not vanish at the transition point. This
point, that must be taken into account in further calculations,
has been overlooked by previous authors.

From the expressio5) for the Landau potential, the
temperature dependence of the susceptibility can be obtained

064104-6



LOW-TEMPERATURE STRUCTURAL PHASE.. PHYSICAL REVIEW B 70, 064104(2004)

in a similar way as that shown in previous sections. After~T>? behavior close to the transition point is obtained.
some straightforward but cumbersome calculatipmbich ~ These two effects have not been considered together until
implies differentiating with respect tgq and the use of the now, so the above mentioned asymptotics has been over-
Vieta relations for the roots of E@46)] one finds that, in the |ooked. It is related to the softening that, due to the piezo-
relaxation case, the low-temperature asymptotics of such @ectric effect, exists in an acoustic branch, i.e., the vanishing
dependence isT? as in the relaxation cases studied previ-yelocity of a transversal acoustic wave. Dipolar interactions

ously. Complicated dispersions arising from dipolar 10ng-go not modify drastically such a softening, which justifies
range interactions do not alter this result. It is because thg,eir omission in Eq(42).

temperature dependence is obtained irrespective of integra-

tion over wave vectorfsee, e.g., EqQ.13)]. This justifies the

omission of terms related to these interactions in &8§). V. CONCLUSIONS
The fact that the long-range interactions do not change the . :

low-temperature asymptotic of the temperature dependence We have presented a sem!phenomenploglcgl theory of

of the susceptibility in the relaxation case is because of th W-T structural phase transmons_ by including order-

following. The elementary excitations of lowest energy argParameter dynamics of the re_laxatl_on type. Wwe have re-

those associated with the critical degrees of freedom due tﬁt”Cted ourselves fo the case in which this relaxation does

the corresponding relaxation. Whatever the distance from thiot depend on either the wave vector or the frequency.

transition point, the thermal activation is almost independen ithin the contilnuous med'la theory we use, th? relaxation is
of this distance. then characterized by a single phenomenological parameter

If there is no relaxation, the elementary excitations of_(ViSCOSity coefficient Both phonon-like and relaxation lim-

lowest energy are, however, the acoustic ones. We have df_ing cases can be reproduced .by \_/arying this parameter.
We have focused our attention in the IGwasymptotics

ready seen in Sec. Ill a similar situation that takes place in]c h d q £ 1h lized .
nonferroelectrics{longitudina) acoustic phonons yield the of the temperature dependence of the generalized suscept-

. 2 12 -1 .. .
main contributionfar from the transition point. What is dif- Pility- A dependence-(T°-T¢)™ close to the transition point

ferent now is that acoustic phonons may yield the main coniS commonly accepted as an indication of a displacive tran-

tribution even at the transition point. This is because, as w&ltion, i.€., a ftransition involving phonon-like order-
have already noticed, there is no vanishing optical frequenP@rameter dynamics, although the presence of long-range in-

cies due to the piezoelectric effect. Estimations of the corretéraction modifies such a asymptotids particular, we have
sponding gap show that in KDP, for example, opticalfound, that due to the combined 'effect of striction and piezo-
phonons could be frozen out up to temperatures b0 K.20 elecglzc g/ﬁejts (KDP casg this asymptotics becomes
We shall consider in further calculations that this freezing™ (T ~Te 2)_ - These two effects have not been considered
actually takes place for what seems to be well possible man{Pgether until now, so this asymptotics was overlooked in
other systemsthe piezoelectric effect in KDP is not espe- Previous papers. For order-disorder transnmnsaxat!onzal
cially strong. Then for the lowT asymptotics of the tem- dyr;amlcs), we have found that this dependence-~$T*
perature dependence of the inverse of the susceptibility oneTe) ™ for temperature-independent relaxation times, irre-
finds that spective of the long-range interactions. So, in principle, in

KDP-type systems low- structural phase transitions with
)2, phonon-like and relaxational order-parameter, i.e., displacive
and order-disorder, respectively, might be distinguishable by
these asymptotics, although experimentally it is quite diffi-
cult. Let us stress that the key point for understanding the
low-T properties is the order-parameter dynamics, what
wherea’ =a*-a_ and®, , are constant& Due to the com- could be determined in ferroelectrics by measuring, e.g., the
bined influence of both striction and piezoelectric effects, thecorresponding dielectric losses.

L
a’ +(T/0)%?, a' < hi(c a
e 2 (50

keT | «
a + (T/®2)4, a > i(C ac )1/2'
hUt
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