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A theoretical study on low-temperature structural phase transitions is presented, in which both phonon-like
and relaxation order-parameter dynamics are contemplated. While the first limiting case has been considered
previously, the second one is studied here. Attention is put on the low-temperature asymptotics of the tem-
perature dependence of the generalized susceptibility. In the relaxation case, it is found,sT2−Tc

2d−1 for
temperature-independent relaxation times in a broad region of the temperature-pressure phase diagram. In
contrast to that obtained in the phonon-like case, this asymptotics is not modified by long-range interactions
(dipolar forces, piezoelectric effect, etc.).
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I. INTRODUCTION

Structural phase transitions are usually divided into two
classes: displacive and order-disorder ones(see, e.g., Ref. 1).
The labels refer to limiting cases, but still the division is
convenient. Among other features, it points out the order-
parameter dynamics: phonon-like in the former and relax-
ational in the latter. By varying a control parameter, e.g.,
pressure or chemical composition, the corresponding transi-
tion temperature can virtually be driven to zero in both cases.
Well known examples are SrTiO3 (displacive2) and KH2PO4
(order-disorder3). The theory of low-T displacive phase
transitions4–7 has been developed a long time ago(see Ref. 8
for a recent review). However, the theory concerning low-T
order-disorder transitions is still lacking.

It is worth mentioning the possibility that, depending on
the temperature regime one considers, the order-parameter
dynamics of a given transition may evolve from one of the
above mentioned limiting cases to another one. Let us con-
sider, for instance, a relaxational one. With lowering of the
transition temperature this dynamics may convert into a
phonon-like case because of, e.g., the increasing importance
of tunneling.9 But quantum effects may be important before,
if it actually exists, such a conversion takes place.10 Existing
theories on low-T structural phase transitions4–8 are therefore
clearly insufficient for interpreting these cases, as far as they
are restricted to phonon-like dynamics, i.e., they neglect any
damping. The aim of this paper is just to account for this
damping and, ultimately, to describe low-T structural phase
transitions with relaxational order-parameter dynamics.

The importance of the order-parameter dynamics in low-T
phase transitions is due to the intimate connection existing
between statistics and dynamics in quantum systems. This
has been noticed, for instance, in magnets. Here various
types of order-parameter dynamics have been revealed, and
much attention has been paid to the role that these dynamics
play in the corresponding low-T transitions(see Ref. 11 for a
recent review). As we have mentioned, different types of
order-parameter dynamics are also possible in low-T struc-
tural phase transitions. Here, in contrast, only the phonon-
like dynamics has been studied until now. In this paper, we

shall study both limiting cases of phonon-like and relaxation
order-parameter dynamics in structural phase transitions,
paying attention to possible differences in the corresponding
anomalies. To do so, we shall use a semiphenomenological
approach in which low-T phase transitions are described
within a continuous media theory. Within this formalism, we
shall assume that relaxation is characterized by a single phe-
nomenological parameter(a viscosity coefficient) describing
the simplest case of wave-vector- and frequency-independent
damping. To determine the microscopic nature of such a
damping is a very difficult task that is beyond the scope of
the present work(since it is matter of a full microscopic
theory). Thus its temperature dependence, for instance, is
assumed to be obtainable from the experiments. In the fol-
lowing we shall consider a temperature-independent damp-
ing for the sake of illustration, although this dependence
would modify final formulas in a trivial way.

It is worth mentioning that the lack of studies dealing with
relaxational dynamics in low-T structural phase transitions
sometimes give rise to some confusion. In Ref. 12, for in-
stance, it is reported the low-T thermal anomaly of the di-
electric constant occuring in prototypical order-disorder sys-
tems(KH2PO4 and KD2PO4). An order-parameter dynamics
of relaxation type is very possible at these temperatures.
Nevertheless, the authors analyze the experimental data on
the basis of models in which this relaxation is completely
absent.13 On the basis of corresponding discrepancies be-
tween theory and experiments, their striking conclusion that
a classical order-disorder transition becomes displacive at
low temperatures is therefore unjustified(see below).

In this work, we focus our attention on the anomalies of
the generalized susceptibility(i.e., the dielectric susceptibil-
ity when considering ferroelectrics) associated with low-T
phase transitions because of current experimental interest.12

Nevertheless, a theoretical framework is provided according
to which all other anomalies can be obtained. The paper is
organized as follows. Section II has a pedagogical character,
and here we consider a simple model of one-component
order-parameter dynamics in which long-range forces are ne-
glected. It serves us to introduce the method to include re-
laxational dynamics when studying low-T structural phase
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transitions. By this method we first reproduce the results of
the existing(phononic) theory, and then extend this theory to
the relaxation case. We shall do it in two different ways. One
of them consists of calculating the response function from
the nonlinear equation of motion(Sec. II A), and the other is
by computing the free energy(Sec. II B). In Sec. III we
improve the model by accounting for acoustic phonons. In
Sec. IV we shall focus our attention on KDP-type systems. In
addition to considering here the relaxation case of the order-
parameter dynamics, we revise the phonon-like case because
we found that the correct low-temperature asymptotics of the
temperature dependence of the susceptibility is different
from that previously reported.

II. SIMPLE MODEL

Suppose that the phase transition at zero temperature
takes place because of a change in pressure. Integrating out
all degrees of freedom but the critical ones, the effective
potential energy per volume unit of the system can be written
as

U =E Sa

2
h2 +

b

4
h4 +

c

2
s¹hd2Ddr s1d

(it is assumed that the system has unit volume). Hereh is the
order parameter anda=apsp−pcd is the only pressure-
dependent coefficient.pc would correspond to the phase tran-
sition pressure in the classical case, i.e., if the ions would
have infinite masses and therefore quantum fluctuations were
suppressed. Real phase transition pressure is different and
will be calculated below.

Let us here make a comment relative to fluctuations. It is
frequently said that, while usual(high-T) phase transitions
are due to thermal fluctuations, those occurring at low tem-
peratures are due to quantum ones. The term “quantum phase
transition” seems then to be synonymous with low-T phase
transition. This makes sense for some systems,11 but it is
quite confusing for others. Among these others we have just
the structural ones. In fact, as we have pointed out, a zero-T
structural phase transition is perfectly imaginable without
any quantum fluctuation: A crystal with infinite-mass ions
may change its structure by applying pressure in accordance
with Eq. (1). This observation does not mean, as we shall see
below, that quantum fluctuations and/or quantum statistic
play no role in low-T structural phase transitions.

A. Generalized susceptibility

Let us first calculate the static generalized susceptibility
following a standard way and considering the classical case.
The equation of motion for the order parameter can be writ-
ten as

rcḧ + g̃ḣ + ah + bh3 − c¹2h = h, s2d

whererc is an optic density andg̃ a “viscosity coefficient.” It
is assumed that such a viscosity arises because of the cou-
pling between the order parameter and other degrees of free-
dom not considered here explicitly. Consequentlyg̃ may de-
pend, e.g., on temperature. But in the following we shall take

it as a constant for the sake of simplicity. Thermal fluctua-
tions are described by the random fieldh. In the classical
case it is such that

khsr ,tdhsr 8,t8dl = 2g̃b−1dsr − r 8ddst − t8d, s3d

whereb−1=kBT and k¯l denotes the statistical average.
Let us express the order parameter as a Fourier transform:

hsr ,td=ok edvhk,veik·re−ivt. Within a first approximation in
the anharmonicity, the inverse of the static susceptibility as-
sociated with the macroscopic degree of freedomsk =0d can
be taken as

x−1 = a + 3bo
k
E dvkhk,vh−k,−vl. s4d

The average in this expression can be computed by using the
dynamic susceptibility in the harmonic casesb=0d:

xs0dsk,vd =
1

rcfvc
2skd − v2 − igvg

= −
1

rcfv + il1skdgfv + il2skdg
, s5d

wherevc
2skd=sa+ck2d /rc, g= g̃ /rc and

l1,2skd =
1

2
hg ± if4vc

2skd − g2g1/2j. s6d

We then have

x−1 = a +E d3k

s2pd3E
0

`

dv
2kBT

pv
Im xs0dsk,vd. s7d

Although this analysis is strictly classical, it has been
shown that the corresponding fully quantum mechanical ex-
pression follows merely with the replacementkBT
→ s"v /2dcoths"bv /2d (see, e.g., Refs. 14 and 15). We then
have

x−1 = a +
"

p
E d3k

s2pd3E
0

`

dv Im xs0dsk,vdcoths"bv/2d

= a +
1

brc
E d3k

s2pd3 o
n=−`

`
1

nn
2 + unnug + vc

2skd

= a +
2

brc
E d3k

s2pd3S 1

2vc
2skd

+
c„1 + l1skd/n… − c„1 + l2skd/n…

nfl1skd − l2skdg D , s8d

wherenn=2pn/ s"bd, n=n1, and thec function is the loga-
rithmic derivate of the gamma function.[The infinite sum in
the second form of Eq.(8) appears as a result of integration
in the complexv plane.]

1. Phonon-like dynamics

If there is no dampingsg=0d, we havel1=−l2= ivc. The
resulting expression in Eq.(8) is
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x−1 = aph
* +

3"b

4p2rc
E nfvcskdg

vcskd
k2dk, s9d

where

aph
* = a +

3"b

8p2rc
E k2dk

vcskd
, s10d

andnsvd=fexps"bvd−1g−1 is the Bose-Einstein distribution
function. Equation(9) coincides with the corresponding ex-
pression reported in Refs. 5 and 6.

The transition pressure at zero temperature is such that
aph

* =0, instead ofa=0. This renormalization of the transition
pressure is due to zero-point fluctuations. The critical fre-
quenciesvcskd are also renormalizated in such a way, but
one has to consider higher-order corrections to obtain it ex-
plicitly. Below we shall assume thatvcskd represents these
renormalized frequencies. Thus we reproduce the vanishing
of the optical frequencyvcs0d that takes place within this
model as a result of the phase transition, i.e., the softening of
the optical branch.

Far from the transition pointfkBT!"vcs0dg the inverse of
the susceptibility has an exponential dependence with tem-
perature~T3/2expf−"vcs0d / skBTdg. It is because of the “in-
efficiency” of the thermal activation of the optical phonons
due to the hardness of this branch. The softening of the
branch associated with the transition increases the “effi-
ciency” of this thermal activation. Thus, close to the transi-
tion fkBT@"vcs0dg the temperature dependence of the in-
verse of the susceptibility becomes~T2.

2. Relaxational dynamics

In the pure relaxation limitsrc→0d we have l1skd
<Ãcskd and l2skd<g−Ãcskd, where Ãcskd=vc

2skd /g
=Kskd / g̃ then describes the inverse of the relaxation times in
the symmetric phase[see Eq.(2)]. In this case, the low-T
asymptotics of Eq.(8) can be obtained by using the
asymptotic expansion of thec function (it will be valid over
most of the integration interval). Thus we get

x−1 < arel
* + CT2, s11d

where

arel
* = a +

3"b

2p3g̃
E k2 lnfg/Ãcskdgdk, s12d

C =
kB

2b

2p"g̃
E k2dk

Ãc
2skd

. s13d

In the phonon case, the vicinity of the phase transition
increases the thermal activation of phonons. This leads to
different behaviors in the temperature dependence of the sus-
ceptibility depending on the distance from the transition
point. In the relaxation case, however, the distance from the
transition point is not so decisive for the thermal activation.
In consequence, only the,T2 behavior is obtained in the
low-temperature regime of the relaxation case for a
temperature-independent viscosity coefficient.

B. Generalized susceptibility revisited: A method for further
calculations

Let us now reproduce the above results, but follow a dif-
ferent method. The starting point is now the calculation of
the Landau potential no matter what the order-parameter dy-
namics is, i.e., the free energy as a function of the critical
macroscopic degree of freedom. Once this Landau potential
is obtained, all the anomalies associated with the low-T
structural phase transition under consideration can be com-
puted. However, as we have mentioned, we shall restrict our-
selves to calculate here the one with the generalized suscep-
tibility.

Let us now express the order parameter as a Fourier trans-
form: hsr ,td=okhkstdeik·r. Thus, Eq.(1) can be rewritten
showing explicitly its dependence on the above-mentioned
macroscopic degree of freedomh0:

U = U0sh0d + o
kÞ0

Ksk,h0d
2

uhku2 + bh0 o
k,k8Þ0

hkhk8h−k−k8

+
b

4 o
k,k8,k9Þ0

hkhk8hk9h−k−k8−k9, s14d

where

U0sh0d =
a

2
h0

2 +
b

4
h0

4, s15d

Ksk,h0d = a + 3bh0
2 + ck2. s16d

The equations of motion for the Fourier components of
the order parameter can be written as

ḧk + gḣk + vc
2sk,h0dhk = 0, s17d

where vc
2sk,h0d=Ksk,h0d /rc. Here we have neglected the

contribution given by the last two sums in Eq.(1). Such
action is possible by virtue of a weak anharmonicity. But
note that actually we do not neglect this anharmonicity at all:
It is responsible for the dependence of characteristic frequen-
cies vc on h0. The anharmonicity that we are partially ne-
glecting [for instance, by omitting the last two terms in Eq.
(14)] may give some contribution to the relaxation that van-
ishes at zero temperature.16 Accordingly g may depend on
temperature and/or wave vectork. But as before we shall
take it as a constant.

1. Phonon-like dynamics

Let us present the method assuming first that the order-
parameter dynamics is phonon-like. If the anharmonicity is
weak, the equations of motion for the Fourier components of
the order parameter can be written as

ḧk + vc
2sk,h0dhk = 0. s18d

Within this approximation the system reduces to a system of
decoupled harmonic oscillators. So its free energy can be
written as14
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Fsh0d = U0sh0d +
1

b
o
k

lnh2 sinhf"bvcsk,h0d/2gj

= U0sh0d + o
k

"vcsk,h0d
2

+
1

b
o
k

lnh1 − expf− "bvcsk,h0dgj. s19d

All degrees of freedom but that associated withh0 are inte-
grated out in this potential. However, it describes nonequi-
librium states of the system just because, at this point,h0 has
a nonfixed value. Then one has to realize that what Eq.(19)
represents is just the Landau potential of the system.1

We are now in a position to reproduce all the anomalies
associated with the phase transition following well-known
procedures.1 Let us consider the anomaly of the generalized
susceptibilityx. In the symmetric phase we havex−1=F9
;s]2F /]h0

2dh0=0 (hereafter primes denote partial differenti-
ating with respect toh0). Bearing in mind that

vc8skd = 0, s20ad

vc9skd = 3b/frcvcskdg, s20bd

from Eq. (19) one finds that

x−1 = aph
* +

3"b

4p2rc
E nfvcskdg

vcskd
k2dk, s21d

where

aph
* = a +

3"b

8p2rc
E k2dk

vcskd
, s22d

andnsvd=fexps"bvd−1g−1 is the Bose-Einstein distribution
function. (Summation over wave vectors has been replaced
by integration: ok <s2pd−3edk.) Equation (21) coincides
with the one obtained in Sec. II A 1

2. Relaxational dynamics

Let us now calculate the low-temperature asymptotics of
the temperature dependence of the susceptibility when the
motion of the order parameter includes some relaxation.
Similar to the asymptotics expressed in Sec. II A, let us con-
sider the equation

ḧk + gḣk + vc
2sk,h0dhk = 0. s23d

The system is therefore a system of decoupled damped har-
monic oscillators. Making use of the partition function of
such damped oscillators,17 the Landau potential can be ob-
tained. It reads

Fsh0d = U0sh0d +
1

b
o
k

hln "bfl1sk,h0dl2sk,h0dg1/2

− ln Gf1 + l1sk,h0d/ng − ln Gf1 + l2sk,h0d/ngj,

s24d

whereG is the gamma function andl1,2sk,h0d are given by
Eq. (6) with vcskd→vcsk,h0d.

The inverse of the susceptibility in the symmetric phase
can be calculated from Eq.(24) by differentiating with re-
spect toh0. Noting thatl1,2sk,h0d satisfy the relations

l1skd + l2skd = g, s25ad

l1skdl2skd = vc
2skd, s25bd

[Eqs.(25) are the relations existing between the coefficients
and the roots of the algebraic equationl2−gl+vc

2=sl−l1d
3sl−l2d=0, i.e., the Vieta relations for the roots of such a
equation(see, e.g., Ref. 18)], and bearing in mind Eqs.(20),
it is easy to see that

l18skd = l28skd = 0, s26ad

l19skd = − l29skd =
6b

rcfl2skd − l1skdg
. s26bd

Then we further get

x−1 = a +
3b

p2brc
E H 1

2vc
2skd

+
cf1 + l1skd/ng − cf1 + l2skd/ng

nfl1skd − l2skdg Jk2dk. s27d

One can see that the expression obtained here by calculating
the Landau potential of the system coincides with Eq.(8).
Consequently, the low-T asymptotics of Eq.(27) in the
phonon-like and relaxation limiting cases match with those
given in Sec. II A 1 and II A 2, respectively.

III. STRUCTURAL NONFERROELECTRIC TRANSITIONS:
ACCOUNTING FOR ACOUSTIC PHONONS

In any system, there always exists a coupling between the
order parameterh and the strain tensoruij via the termh2ull
in the potential energy, i.e., the striction effect. As a result of
this coupling, acoustic phonons give a contribution to the
thermal anomalies associated with low-T structural phase
transitions which may be significant because acoustic
phonons are excitations of low energy. So let us improve the
above studied model by accounting for the striction effect.
Thus the model can describe qualitatively nonferroelectric
phase transitions.

Taking into account the striction effect, the potential en-
ergy can be written as

U =E Sa

2
h2 +

b

4
h4 +

c

2
s¹hd2 +

a

2
vh2 +

K

2
v2Ddr , s28d

wherea is the striction coefficient,K the bulk modulus and
v the dilatation of the systemsv=ulld. We shall take into
account the anharmonicity within the same approximation as
in the preceding section. Thus, this potential energy can be
written in Fourier space as

U = U0sh0,ed +
1

2 o
kÞ0

Ki jsk,h0,edji,kj j ,−k s29d

(summation over double indices is implied), where
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U0sh0,ed =
a + ae

2
h0

2 +
b

4
h0

4 +
K

2
e2, s30d

with e being the homogeneous dilatation:

Ki jsk,h0,ed = Sa + 3bh0
2 + ae + ck2 iah0k

− iah0k rvl
2k2 D , s31d

with r being the density of the system andvl the longitudinal
velocity of sound, andjk =shk ,ukd, with uk being the

k-Fourier component of a longitudinal acoustic displace-
ment.

The system is now a system of linearly coupled harmonic
oscillators. Let us consider that relaxation enters in the dy-
namics of the order parameter only. If this relaxation is simi-
lar to that considered in the preceding section, i.e., if it is
characterized by a viscosity coefficientg̃, the partition func-
tion of the system can be calculated(see Ref. 17). From this
partition function we can write down the Landau potential of
the system:

Fsh0d = U0sh0,ed +
1

b
o
k
Hln

"bfl1sk,h0dl2sk,h0dl3sk,h0dl4sk,h0dg1/2

vlskd
− o

i=1

4

ln Gf1 + lisk,h0d/ngJ , s32d

where the sethlij is such that

l1 + l2 + l3 + l4 = g, s33ad

l1l2 + l2l3 + l3l4 + l4l1 + l1l3 + l2l4 = vc
2 + vl

2,

s33bd

l1l2l3 + l2l3l4 + l3l4l1 + l1l3l4 = gvl
2, s33cd

l1l2l3l4 = vc
2vl

2 − f , s33dd

with vc
2sk,h0d=K11sk,h0d /rc, vlskd=vlk, and fsk,h0d

=sah0kd2/ srcrd. Let us mention that Eqs.(33) are the Vieta
relations for the roots of the equation

l4 − gl3 + svc
2 + vl

2dl2 − gvl
2l + vc

2vl
2 − f = 0. s34d

The characteristic frequencies of the system are therefore
−ili.

To our purposes, the value of the macroscopic degree of
freedome can be calculated by minimizing Eq.(30). After
doing so we find that

U0sh0d =
a

2
h0

2 +
b0

4
h0

4, s35d

K11sk,h0d = a + 3b1h0
2 + ck2, s36d

whereb0=b−a2/ s2Kd andb1=b−a2/ s6Kd.
Let us now calculate the generalized susceptibility of the

system in the symmetric phasesh0=0d following that ex-
pressed in Sec. II B. Expressions for the derivates of thel’s
with respect toh0 are then required. From Eqs.(33) one can
easily see thatli8skd=0. Forli9skd one finds that, for instance,

l19skd = −
1

l1skd − l2skdS2vcskdvc9skd −
f9skd

l1
2skd + vl

2skdD ,

s37d

where it has been taken into account thatl3,4skd=±ivlskd.
Similar expressions forl2,3,49 skd are also obtainable from
Eqs. (33). Moreover the rootsl1,2skd satisfy the relations
(25). Bearing these relationships in mind we find that the
inverse of the susceptibility, in addition to Eq.(21),19 has
now the contribution

Dx−1 = −
1

4p3b
E f9skd

vc
2skdF 1

vl
2skd

+
2vc

2skd
nfl1skd − l2skdg

3Scf1 + l1skd/ng
l1

2skd + vl
2skd

−
cf1 + l2skd/ng
l2

2skd + vl
2skd D

+
2vc

2skd
nvlskd

ImS cf1 + ivlskd/ng
fl1skd − ivlskdgfl2skd − ivlskdgDGk2dk.

s38d

In the purely phononic case,g=0 sl1=l2
* = ivcd, Eq. (38)

reduces to the already known result5,6

Dx−1 =
"a2

s2pd2rcr
E S nfvcskdg + 1/2

vcskdfvc
2skd − vl

2skdg

−
nfvlskdg + 1/2

vlskdfvc
2skd − vl

2skdgDk4dk. s39d

This contribution yields a temperature dependence of the in-
verse of the susceptibility~T4. This is the leading one far
from the transition pointfkBT!"vcs0dg. Close to the transi-
tion fkBT@"vcs0dg, however, the most important contribu-
tion ~T2 is obtained from Eq.(21).

Substituting the asymptotic expansion of the psi function
into Eq.(38) we get its low-T behavior in the relaxation case
(gÞ0, rc→0):
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Dx−1 < Da * + DCT2, s40d

where Da* is a constant andDC=−ha2/ f3b1sK+4m /3dgjC
[see Eq. (11)]. In this case, the importance of acoustic
phonons is diminished. This is natural because, due to the
relaxation, the dynamics of the order parameter can be acti-
vated even far from the transition point.

IV. PIEZOELECTRIC EFFECT

Let us now study low-T phase transitions taking place in
KDP-type systems. In addition to the striction effect, a linear
coupling between the order parameter and one of the com-
ponents of the strain tensor is present in these systems, i.e., a
piezoelectric effect. The role that this piezoelectric effect
plays in the corresponding transition can be revealed consid-
ering the potential energy

U =E Sa

2
h2 +

b

4
h4 +

c

2
s¹hd2 +

a

2
ullh

2

+ duxyh +
l

2
ull

2 + muijDdr , s41d

whered is the piezoelectric coefficient,m is the shear modu-
lus, andl=K+2m /3 (for the sake of symplicity, the elastic
anisotropy has been taken into account partially). Within the
same approximation in the anharmonicity as in the previous
sections, in Fourier space this can be written as

U = U0sh0,êd +
1

2 o
kÞ0

Ki jsk,h0,êdji,kj j ,−k , s42d

where

U0 =
a + aell

2
h0

2 +
b

4
h0

4 + dh0exy +
l

2
ell

2 + mei j
2 , s43d

with ê representing the tensor of homogeneous strains:

K00 = a + 3bh0
2 + aell + ck2, s44ad

K01 = K10
* = isah0kx + dky/2d, s44bd

K02 = K20
* = isah0ky + dkx/2d, s44cd

K03 = K30
* = iah0kz, s44dd

Ki,j = rfvt
2k2di j + svl

2 − vt
2dkikjg si, j = 1,2,3d, s44ed

with vt being the transversal velocity of sound; andjk
=shk ,ukd, with uk being thek-Fourier component of the
displacement vector. Dipolar long-range interactions that
also take place in these(ferroelectrics) systems have been
neglected. The possibility of such a neglection is explained
below.

Let us assume, as in the previous section, that if there
were no coupling between the order parameter and the elastic
degrees of freedomsa=d=0d, the relaxation would be
present in the order-parameter dynamics only. With this re-
laxation, characterized by a viscosity coefficientg̃, the Lan-
dau potential can be written as

Fsh0d = U0 +
1

b
o
k
Hln

"bfl1sk,h0dl2sk,h0dl3sk,h0dl4sk,h0dl5sk,h0dl6sk,h0dg1/2

vlskdvtskd
− o

i=1

6

lnG f1 + lisk,h0d/ngJ , s45d

where the sethlij corresponds to the roots of the equation

l6 − gl5 + svc
2 + vl

2 + vt
2dl4 − svl

2 + vt
2dgl3 + fvc

2svl
2 + vt

2d

+ vl
2vt

2 + gl + 2gtgl2 − vl
2vt

2gl + vc
2vl

2vt
2 + g + glvl

2

+ 2gtvt
2 = 0, s46d

with vc
2=K00/rc, vl =vlk,vt=vtk, and

g =
dsvl

2 − vt
2d

rcr
sah0k

2 + dkxkydkxky, s47ad

gl = −
d

rcr
fah0kxky + dskx

2 + ky
2d/4g, s47bd

2gt = −
ah0

rcr
sah0k

2 + dkxkyd. s47cd

The values of homogeneous strains can be determined by
minimizing Eq.(43). After doing so we find that

U0 =
a + d2/s4md

2
h0

2 +
b0

4
h0

4, s48d

K00 = a + b1h0
2 + ck2. s49d

As we have seen in previous sections, zero-point fluctuations
yield a renormalization of the coefficienta. But note that,
due to the piezoelectric effectsdÞ0d, this renormalized co-
efficient a* does not vanish at theT=0 phase transition: it
takes the valueac

* =−d2/ s4md. In consequence, the optical
frequencies(or inverse of relaxation times) which enter the
above expressions do not vanish at the transition point. This
point, that must be taken into account in further calculations,
has been overlooked by previous authors.

From the expression(45) for the Landau potential, the
temperature dependence of the susceptibility can be obtained
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in a similar way as that shown in previous sections. After
some straightforward but cumbersome calculations[which
implies differentiating with respect toh0 and the use of the
Vieta relations for the roots of Eq.(46)] one finds that, in the
relaxation case, the low-temperature asymptotics of such a
dependence is~T2, as in the relaxation cases studied previ-
ously. Complicated dispersions arising from dipolar long-
range interactions do not alter this result. It is because the
temperature dependence is obtained irrespective of integra-
tion over wave vectors[see, e.g., Eq.(13)]. This justifies the
omission of terms related to these interactions in Eq.(42).

The fact that the long-range interactions do not change the
low-temperature asymptotic of the temperature dependence
of the susceptibility in the relaxation case is because of the
following. The elementary excitations of lowest energy are
those associated with the critical degrees of freedom due to
the corresponding relaxation. Whatever the distance from the
transition point, the thermal activation is almost independent
of this distance.

If there is no relaxation, the elementary excitations of
lowest energy are, however, the acoustic ones. We have al-
ready seen in Sec. III a similar situation that takes place in
nonferroelectrics:(longitudinal) acoustic phonons yield the
main contributionfar from the transition point. What is dif-
ferent now is that acoustic phonons may yield the main con-
tribution even at the transition point. This is because, as we
have already noticed, there is no vanishing optical frequen-
cies due to the piezoelectric effect. Estimations of the corre-
sponding gap show that in KDP, for example, optical
phonons could be frozen out up to temperatures of,10 K.20

We shall consider in further calculations that this freezing
actually takes place for what seems to be well possible many
other systems(the piezoelectric effect in KDP is not espe-
cially strong). Then for the low-T asymptotics of the tem-
perature dependence of the inverse of the susceptibility one
finds that

x−1 <5a8 + sT/Q1d5/2, a8 !
kBT

"vt
scuac

* ud1/2,

a8 + sT/Q2d4, a8 @
kBT

"vt
scuac

* ud1/2,6 s50d

wherea8=a*−ac
* andQ1,2 are constants.21 Due to the com-

bined influence of both striction and piezoelectric effects, the

,T5/2 behavior close to the transition point is obtained.
These two effects have not been considered together until
now, so the above mentioned asymptotics has been over-
looked. It is related to the softening that, due to the piezo-
electric effect, exists in an acoustic branch, i.e., the vanishing
velocity of a transversal acoustic wave. Dipolar interactions
do not modify drastically such a softening, which justifies
their omission in Eq.(42).

V. CONCLUSIONS

We have presented a semiphenomenological theory of
low-T structural phase transitions by including order-
parameter dynamics of the relaxation type. We have re-
stricted ourselves to the case in which this relaxation does
not depend on either the wave vector or the frequency.
Within the continuous media theory we use, the relaxation is
then characterized by a single phenomenological parameter
(viscosity coefficient). Both phonon-like and relaxation lim-
iting cases can be reproduced by varying this parameter.

We have focused our attention in the low-T asymptotics
of the temperature dependence of the generalized suscepti-
bility. A dependence,sT2−Tc

2d−1 close to the transition point
is commonly accepted as an indication of a displacive tran-
sition, i.e., a transition involving phonon-like order-
parameter dynamics, although the presence of long-range in-
teraction modifies such a asymptotics.8 In particular, we have
found that due to the combined effect of striction and piezo-
electric effects (KDP case) this asymptotics becomes
,sT5/2−Tc

5/2d−1. These two effects have not been considered
together until now, so this asymptotics was overlooked in
previous papers. For order-disorder transitions(relaxational
dynamics), we have found that this dependence is,sT2

−Tc
2d−1 for temperature-independent relaxation times, irre-

spective of the long-range interactions. So, in principle, in
KDP-type systems low-T structural phase transitions with
phonon-like and relaxational order-parameter, i.e., displacive
and order-disorder, respectively, might be distinguishable by
these asymptotics, although experimentally it is quite diffi-
cult. Let us stress that the key point for understanding the
low-T properties is the order-parameter dynamics, what
could be determined in ferroelectrics by measuring, e.g., the
corresponding dielectric losses.
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