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Abstract—Striction-mediated attraction of domain walls, solitons in incommensurate phases, and Abrikosov
vorticesin superconductors are considered. It isshown (@) that it isthistype of attraction that can be responsible
for a soliton-density jump in lock-in transitions and (b) that the strain-induced vortex interaction in supercon-
ductorswith ahigh Ginzburg—L andau parameter is higher by one or two orders of magnitude than was assumed

earlier. © 2005 Pleiades Publishing, Inc.

INTRODUCTION

The influence of long-range elastic interactions on
the properties of modulated phases, which are the reg-
ular structures of solitons, has long attracted attention
in connection with the study of the properties of various
systems such as dielectrics possessing structurally
incommensurate phases [1] and second-order super-
conductors with Abrikosov-vortex lattices [2, 3]. Usu-
ally, this problem in incommensurate phases was stud-
ied with the aim to establish whether a lock-in transi-
tion is continuous or the soliton density at the transition
point changes in a jumpwise manner. As a rule, the
mechanisms that could give rise to a soliton-density
jump were examined with no allowancefor the striction
effect. At the same time, in studies of vortex-lattice ori-
entations in crystals, the striction-mediated interaction
in superconductors was often considered as one of the
main types of interactions. Such interaction wasusually
calculated based on a simplified model under the
assumption that the elastic strains inducing vortex
interactions are due only to vortex cores. However, it
turned out that the interactions in these studies were
considerably underestimated. Therefore, the present
study is dedicated to the consideration of these prob-
lems.

At the beginning, the striction effect is considered
on the simplest example of domain walls described by
the one-dimensional distribution of a one-component
order parameter. This example allows us to revea the
characteristic features of thisinteraction and to evaluate
it for different types of domain walls. Then, following
the concepts stated in [4, 5], we calculate the striction-
mediated attraction of two-dimensional solitons in
incommensurate phases and Abrikosov vortices in
superconductors. Some computations are performed by
amethod somewhat different from the method used in

the studies cited above, and some of the results obtained
are considered in more detail.

A POLYDOMAIN CRYSTAL

Consider apolydomain structure described by aspa-
tially inhomogeneous distribution of a one-component
order parameter n(x). The order parameter inside a
domain wall is inhomogeneous and, at a certain point,
goesto zero. Variation of the order parameter inside the
wall should changethe crystal strainsin such away that
the temperature variation in a certain layer of a crysta
undergoes no phasetransitions. In this case, therelief at
the site of the wall intersection by the surface should be
distorted in conformity with relaxation of elastic
stresses in the vicinity of the surface. It is natura that
the strain and order-parameter distributions in the
vicinity of the surfaces and in the crystal bulk are dif-
ferent. The strain distributionsin the bulk can be calcu-
lated under the condition of zero bulk stresses. Then, in
order to obtain the exact solution of the problem, one
hasto introduce some additional imaging forces having
the zero average values at the surface. Since the prob-
lem is of a periodic nature, these forces should have a
periodic distribution along the surfaces. As is well
known [6], these forces give rise to additional strains
decreasing in the crystal depth within a characteristic
length of the order of the period of a surface-force dis-
tribution. Therefore, the contribution of the near-sur-
face distortions to the energy of thisregular structureis
rather small because of the small ratio of the structure
period to the crystal size. However, the distributionsin
the crystal bulk we are interested in are one-dimen-
sional. It should be indicated that the solution of this
elastic problem at the given one-dimensional distribu-
tion of the strain sources and arbitrary anisotropy was
obtained in [7]. We are interested in the solution of a
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more complicated problem in which the spatial distri-
butions of strains and order parameter vary self-consis-
tently.

Consider the case of an elastically isotropic medium
and analyze the anisotropic case of an example of a
more complicated domain-wall structure in an incom-
mensurate phase. Represent the energy per volume unit
of the system, f, in the form

- 112, gty 0T

f = VI[ZAr] +4Br] +2DEHXD
L >« (1)

+ ”lzun + ugflik_ééikullg + §U|2|}dV,
where V isthe sample volume, ) isthe order parameter
varying along X, u is the strain tensor, u is the shear
modulus, K isthe bulk modulus, and A = A(T-T,) <
0; i.e., the phase has alow symmetry.

For a homogeneous system, we have

_ 1A

A r
: = —qNer fom =350 @

Ne = _En Uje

where B'= B - 2r/K.

Following [8], we start calculating the energy of a
polydomain structure with the solution of the elastic
problem. For one-dimensional strain distributions
(along the x axis), the corresponding compatibility con-
ditions have the form

2 2
d
d—“;Z =0, —¥ =0, —”;Z = 0. 3)
dx dx dx

With due regard for the problem symmetry in the yz
plane, only the following solutions of above equations
arepossible: u,, = u,, = U and u,, = 0, where i isacon-
Stant.

The equations of the local e astic equilibrium have
the form

oy _ o 40y _ o 90

dx dx dx

where, in accordance with Eq. (1), elastic stresses have
the form

=0, “

2
0jj = %_ﬁugulléij"'zuuij"'rnzéij- (%)

Moreover, in the absence of any external stresses, the
o;; vaues averaged over the bulk should be equal to
zero[9]:

[o;;0= 0. (6)
From Egs. (4)—6), we have

4 2
Oux = g( + é%uxx + a( _épg(uyy-'- Uy) + rn2 =0,
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Oyxy = 2l—luxy =0, Ox; = 2Muxz =0 @)

As aresult, the nonzero components of strain are

T Ll SECIN

U, = Uy, = U.

Substituting these solutions into Eg. (1), we arrive at
the free-energy density in the form

L
_ L [Ar2rig e, 1g. 4
f_ZLI[D 2 o t2B
oL

(10)

Lordn, Kipe
*3Pmpa Y }dx'
where 2L isthe sample dimension along the x axis, r' =
arp/(K + 4p/3), K' = 12Kp/(K + 4p/3), and B' = B —
2r%/(K + 44/3). Then, U may be considered as a certain
parameter which, similar to n(x), may be determined by
minimizing the free energy described by Eq. (10).
Assuming that the distance | between thewallsis much
larger than the wall width, r., we may represent the
solution for a polydomain structure (with the accuracy
of exponentially small corrections) asasum of the solu-

tions Zmnl (x+ ml) corresponding to isolated walls

—A-2r'0)"
N0 = 5 FAEE
m (11)
-ml
x tanh X—M m)
Dv2p12) _a—2r i)Y
Substituting Eq. (11) into Eq. (10), we obtain

1~\2 ]
_(A+ 2r U) +5—L~]2

f =

B" 2
3212 1~\3/2 (12)
2’ D" (—A—2r'D)
+ n,
38"

where n = 1/(2L) is the wall concentration. If n < 1,
then, minimizing Eq. (12) with respect to U, we obtain

i2 .\ 23/2D:IJ2|A|3/ZB.|]JZ

f = —
4B s
2 12 (13)
_16ur’DIAB"” o
3KKB"

where K = K + 4p/3. The second term in the right-hand
side of Eq. (13) corresponds to the sum of wall self-
energies, whereas the third term corresponds to wall
attraction.

Consider the interaction effect in more detail. It
should be noted that Eq. (6) yields the ratio [y, 0=
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-rq 2K, which, together with Eq. (9), givesriseto the
equalitiesu,, = u,, = U =-rM2[BK. Then, Egs. (7), (9),
and (11) yield longitudinal stresses as

o =g =2ur(n’=mD
yy 2z =
K
U U (14)
2
_ ZHFHeZE_ 1 +r_%’
K 0 COSth—mI |[|
"0 2r, O

wherer, = (DB")"?/(2]JA|B")"* is the correlation radius.
Itisseen from Eq. (14) that the walls give rise to longi-
tudinal stresses not only in theregions of their localiza-
tion but also in the whole crystal bulk, which resultsin
the wall interaction.

INCOMMENSURATE PHASE

In the case of a multicomponent order parameter,
striction corresponds to coupling between strain and
the squared modulus of the order parameter. Moreover,
the striction-mediated interaction strongly depends on
thewall type. Thus, in the case of Bloch walls, the mod-
ulus of the order parameter, p, is constant in the region
of wall localization; therefore, there is no wall interac-
tion: the longitudinal stresses have zero values since

— [p2= 0 (see Eq. (14)). For quasi-Bloch walls char-
acteristic of incommensurate (IC) phases of typel (with
the Lifshitz invariant in the free-energy expansion) with
weak anisotropy in the space of order-parameter com-
ponents, the local quantity p? — [p*Chasavery low non-
zero value [1]. However, in this case, the wall width is
of the order of areciprocal wave vector (q,) of the struc-
ture at the point of the transition “normal (N) phase-IC

phase” whose typical value is of the order of 102dy;

(where d,, is the interatomic distance). This signifies
that, although the additional dilatation israther small, it
arises in extended regions because of a considerably
increased wall interaction. It should be emphasized that
the case of weak anisotropy has drawn great interest
because the continuity of the lock-in transition in sys-
tems having no long-range interactions was rigorously
proven [10]. This case is described in detail elsewhere
[4]. Here, we only derive the basic relationships for the
energy of soliton interaction in the vicinity of such a
transition by a somewhat modified method.

In the simplest case, an IC phase is described by a
one-dimensional modulation (along the x axis) of acer-
tain two-component order parameter (n, = pcos¢ and
N, = psind, where p isthe amplitude and ¢ isthe phase
of the order parameter). This order parameter describes
lowering of the symmetry inthetransition from the nor-
mal phase to the low-symmetric commensurate

CRYSTALLOGRAPHY REPORTS Vol. 50

MINYUKOV et al.

C phase. Then, free energy may be represented as

Vﬂap +Bp" +yp"cos(md) - ongi

(15)
+ 592(@ )2 +O([p )2 + rijpzuij + %)\ijkluijukl}dv-

Here a = a+(T — 8) and m is the anisotropy order
(m=3).

At the temperature T; > 6 determined by the condi-
tionsa, = oa(T, — 8) = 0%/49, the N phase undergoes a
second-order transition to the | C phase, whose structure
isdescribed by a one-harmonic distribution of the order
parameter (N, = pcos(gyX), N, = Psin(gyx)) with the
wave vector ¢, = ¢/(206). Because of anisotropy of the
space of order-parameter components, the wave vector
decreases with lowering of temperature, and the struc-
ture of the | C phase istransformed from aharmonic one
into a domain-like one. Therefore, a lock-in (IC-C)
transition undergone at a certain temperature may be
considered as a transition leading to disappearance of
domain walls.

As earlier, solving the elastic problem, we ignore
near-surface distortions formed in a finite sample and
consider, first, an elastically isotropic medium by set-
ting that Ay = [K — (2/3)u]8;; 0 + H(8 9y + 9,9y and
rj = rg;. In this case, Egs. (3)+9) remam vaI|d if we
make the change n — p. Then, using the notation
u, = U,, we obtain instead of Eq. (10) the following
equation:

= 5t [[au)p’+Bp*+yp"cos(mo)

(16)
K‘uf

oot )7+ 8 ) ks 5,

where a(u,) = a + r'u,, r' and K' have the same values
asin Eq. (10), B" =B -r?(2K), and K = K + 4p/3.

At a fixed value u, the distributions of the order
parameter and free energy of the IC phasein the vicin-
ity of the IC-C transition may be represented as the
expansions in the anisotropy parameter ¢, =
—(mre/29[ap/acl, where a, = -2B"[0?/(2°y§] M2
[10]. In a lower approximation (approximation of a

constant amplitude), the energy of the IC phase, being
afunction of the soliton density (n), has the form [1]

f = —B"p*(uy) + E(u)n

<o (D)
*+43(up)nexp(=mp(u,)/(2n) + = uy).

The coefficients in Eqg. (17) are expressed in terms of
the squared amplitude of the order parameter, p*(u,) =
-0 (uy)/(2B"), and the wave number, g, = 0/(20), of the
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IC structure at the point of the N-IC transition as fol-
lows:

2ym2

po(uy) = 2 (uy), (18)

40p°(uy) p(uy)
mdo ’

I(uy) = (19)

E(uy) = (20)

20p (u
290 W00 -y
In this case, it follows from equations analogous to
Egs. (6)—(9) that u,, = u,y = u; = —rp*(u,)/(3K). Substi-
tuting this relationship into Eq. (16), we see that, in the
approximation of a constant amplitude, strains result
only in the renormalization of the coefficient before p*;
i.e, B — B = B - r¥(2K), and, therefore, u, =
ra/(6Kp" = u./3 and p*(u,) = —a/(2B"). Thus, in this
approximation, solitons do not interact. In the next
approximation with respect to the anisotropy parame-
ter, two corrections appear: a spatially inhomogeneous

correction to p?(u,) denoted as pf (¥) [1] and the corre-

sponding correction to energy (17). Now, the equations
of elastic equilibrium yield

UZZ—Ul = Uyy—ul = El’

", [a(——um2ﬁl+fpl(x)]/a<+4 0 2D

where the additional strain €, = —rEtbf (X(3K) caused
by appearance of solitonsis proportional to the soliton
density n. In the vicinity of the IC—C transition, n < 1;
therefore, €, < u.. Then, we may expand Eg. (17) and
minimize the result with respect to €,. As a result, we
have € = —nr'ER"/K'B' and the free energy of solitons
has the form

of =aqn— a3n2 + a,nexp(—N/n), (22)
wherea, = E,[a(U) - Ocl; & = (r') E B/(2K'B); E, =
Q-mnag@dmpB"); N = mw,/4, and a =
—4moo./(mB") is the energy of an isolated soliton,
which goesto zero at the temperature determined by the
condition a(u,) = a.. The term —a;n? describes the soli-
ton attraction and givesriseto ajump in the soliton den-
sity at the point of the IC—C transition.

Note that the main term of the soliton-energy expan-
sion in an anisotropy parameter a — o for thecasem =
4 wascalculated in [10]. In our notation, it hastheform

a0 — dc)
of = ———— (23)
2BIn[% =%
4a.
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The a, value was calculated with a higher accuracy
than a.. Introducing the dependence of a on u into
Eq. (23), we may, as earlier, caculate the value of soli-
ton attraction. It turns out that the same (within the
changea .~ @) result may also be obtained by min-
imizing Eq. (22) with respect to soliton density with a
subseguent singling out of the main term of expansion
ina — a. in the expression thus obtained.

Now, we show that the expression for free energy in
the vicinity of the IC—C transition for anisotropic sys-
tems has the same form as Eq. (22) and that the coeffi-
cientsin this expression may be obtained by the corre-
sponding renormalization. We vary the initial expres-
sionsfor free energy, Egs. (15) and (16), with respect to
the elastic degrees of freedom, and then compare the
functionals thus obtained. Equation (15) should be var-
ied separately for homogeneous strains ([l [J and inho-
mogeneous elastic displacements (u;), which represent
the independent degrees of freedom. It is convenient to
pass to the following Fourier representation

= [+ 22 [kiu;(k) + kjui(k)] exp(ikr), (24)
k#0

where, in virtue of one-dimensionality of the problem
under consideration, k = (k,, 0, 0). For simplicity, we
limit our consideration to often-encountered systems
described by the symmetry class D,;,. Then, minimizing
Eqg. (15) with respect to the elastic degrees of freedom
in the k space, we obtain from the last two terms

2
N S I
of = 2r|jrkl)\|1klf0 2)\33332 kaf—kxv (25)

k%0
where f, isthe Fourier component of the function f =

p? and )\i_jtl is the tensor reciprocal to the tensor Ayjy.
Returning to the real space in Eq. (25) we obtain

_ 1y i -
6f - —Z[I‘ijrk,)\im i| ﬁ 2A3333

where [..Cindicates averaging over the bulk. Here, the
last term is understood as the renormalization of the
term B[p*Cin Eq. (15).

In turn, minimization of the elastic contribution in
the isotropic case yields

Db“u (26)

2 2
5 = — r”mﬁ ~mﬁ

3KK

Comparing Egs. (26) and (27), we see that the free-
energy functionals which are determined by the distri-
bution of the order parameter alone have the sameform
in both cases and differ only by their coefficients. It fol-
lows that, minimizing these functionals with respect to
the order-parameter distribution, one arrives at the

(27)
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same results for free energy within the accuracy of the
following replacements:

B—r?/(2K) —= B—r3/(2Azz),
4r2|.l/(3K k) — rijrk|)\ﬁt| - r3213/)\3333.

When considering the IC—C transition in the sys-
tems characterized by weak anisotropy, one has aso to
take into account some other interactions [4]. For dis-
placive phase transitions, the most important of which
is described by the dependence of the Lifshitz invariant
on strain. The estimates made in [4] show that if anisot-
ropy is not too weak (10~ < €,,< 1) the striction contri-
bution prevails in attraction. However, in ferroelectric
systems of the order—disorder type, one more mecha-
nism may play an important role: attraction due to ther-
mal domain-wall bending.

As a result of attraction, an IC—C transformation
should be afirst-order transition. Expression (22) with
the renormalized coefficients allows one to determine
the basic transition characteristics: the transition tem-
perature, the temperature of maximum supercooling,
the soliton density at the transition point, the latent heat
of transition, and the anomaly in heat capacity. It should
be indicated that the anomalous part of heat capacity
varies according to the Curie-Weisslaw and diverges at
the point of maximum supercooling.

In the cases of pronounced anisotropy or an IC
phase of type Il (the Lifshitz invariant is forbidden by
the symmetry of the normal phase), the striction-medi-
ated interaction of solitons may be evaluated using the
first term on the right-hand side of Eq. (26). Thisinter-

action equas n*(r?/ K )An?r.)?, where An? is the
squared change in the amplitude of the order parameter
inawall of widthr,.

(28)

MIXED STATE IN A SUPERCONDUCTOR

The effect of striction-mediated attraction on the
properties of vortices in second-order superconductors
was first considered in connection with vortex pinning
at defects. Much later, it was considered in connection
with itsinfluence on the orientation of vortex structures
relative to the crystal lattice (seereferencesin [3, 5)).

Asin the studies of the thermodynamics of a vortex
lattice, in general, when analyzing the above effects,
one usually singles out two regions where the external
magnetic field is either close or not too close to the
upper critical field H,,. To describe the two-dimen-
sional spatial distributions of a complex order parame-
ter W = pexp(i @) in these regions, two qualitatively dif-
ferent approximations are used [11]. In the vicinity of
Hy,, the basic periods of the vortex lattice are close to
the correlation radius & and the distribution of the
order-parameter modulus in the regions between vorti-
cesisinhomogeneous. In the fields not too closeto H,,
the distances between vortices considerably exceed &.

MINYUKOV et al.

In the conventionally used London approximation, it is
assumed that the order-parameter modulus varies only
in the cores of vortices with radii r ~ €. Since, in fact,
the variation of the squared modulus of the order
parameter caused by vortex appearance describes the
distribution of the striction-mediated strain sources, it
was assumed that, in the applicability range of the Lon-
don approximation, the role of these strain sources is
played by vortex cores. Following [5], consider the
effects of along-range elastic action in an approxima:
tion more accurate that the London approximation in
thefieldsH < H,,. In other words, we take into account
the change in the order-parameter modulus not only in
the vortex core but also in the surrounding noncore
region limited by the penetration depth A much larger
than & in superconductors with a pronounced Gin-
Zburg—L andau parameter (K = A/).

We proceed from the Ginzburg—L andau free-energy
expansion with allowance for its dependence on elastic
strains:

vﬂ ralw)? +-|w|

D—lhD——AE‘P

(29)

+ L
4m|U

1
+ I’ulq')l ul] + 2)\,]k|U,]Uk|:|dV

where W is the order parameter corresponding to the
transition to the superconducting state, A is the vector
potential, and H is the magnetic field.

The equilibrium equations have the form

[a+ bW+ ryuy + im0~ 2eAD} = 0, (30)
OH = ‘:;E:e[ (WY P *)——|Lu| A} 31)
i(7\i'|<|uk|"'ri'|q"|2) =0, (32)
ox; " !
Ajjia L+ 15 OwT= o, (33)

where, asearlier, [..(ndicates averaging over the bulk.

Relationship (33) describesthe result of free-energy
variation over homogeneous strains and may be
regarded as the necessary condition for absence of any
homogeneous external stresses. Asin the case of areg-
ular soliton structure in an incommensurate phase con-
sidered above, we ignore the near-surface vortex-lattice
distortions propagating into the crystal bulk for dis-
tances comparable with the period of thislattice.

From Egs. (30) and (33), we abtain the spontaneous
values in the homogeneous superconducting state:

2
W = —a/b*, (34)
s =) 2 A
Uj = _rkl)\ijkI|LPs| = aryA/b*, (35)
CRYSTALLOGRAPHY REPORTS Vol. 50 No.2 2005
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Whel’e b>l< = b — rij rk|)\;:;| .

To calculate the vortex interactionsinduced by elas-
tic strains in an isotropic medium, consider the limit of
an infinite shear modulus. In this limit, only homoge-
neous dilatation u exists, which considerably simplifies
the solution of the elastic problem. Varying Eq. (29)
with respect to the el astic degrees of freedom (homoge-
neous strains and two-dimensional inhomogeneousdis-
placements) of an elastically isotropic medium with a
finite and infinite shear moduli, one can show that al
the data for the finite i may be obtained from the cor-
responding relationships for the limiting case p = «

after the following renormalization: b — b — r2/K
and r/K —= (r/K)H4p/GK)].

In the case p = oo, the two last terms of the free-
energy expansion (29) have the form r?|W fu + Ku?/2.
Strain u may be regarded as a variation parameter.
Since this parameter modifies the coefficient before
| F, we may introduce the notation a(u) = a + rug + re,
where, in accordance with Eqg. (35), us = ra/b*, b* =
(b- r?%K), and ¢ is the vortex-induced strain. Then,
using theresults obtained in [11, 12], we may represent
the free-energy density of the vortex lattice as a func-
tion of magnetic induction B (B = n®d,,, where @, isthe
flux quantum and n is the vortex density) in the form

0

BH Ke®

=i =

EA' + KU + — 5 H=H,
fy = 2 2 (36
VL Dl[B +BH61In(:)ndK/E) }"‘KUSE"'KZE ’( )

FHe < H < He,
where H,, isthelower critical field. For atriangular lat-
tice (considered for the sake of definiteness), we have
By = @AY/ = 1.16 and 2lnv = 2(y — 1) +
In[3'2/(8)], where y = 0.577... (Euler constant) [12].
The magnetic induction is B = 2d,/(3'2d?), where d is
the distance between the vortices. It should beindicated
that, in the first of relationships (36), we ignored the

contribution due to vortex interactions at short dis-
tances.

In our case, H, in relationships (36) depends on u:

He(u) = DK E-2a(u) b

(37)
= 10K . (2a:T0* + 21 fibe).
Moreover, d/§ aso depends on u; i.e, (df)? =

d?4m|W,’bi~2(1 + re/a). Minimizing expression (36)
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with respect to €, we obtain
0 In KAK o1
%ﬁ% Sk B H=Ha
(33)
f 2 2
Dl [B BHO In(vd/E) _In"(vd/g) éﬁBz}

FHo, < H < Ho.

Here AK/K isarelative jump of the bulk modulusinthe
transition from the normal to a superconducting phase
(usually AK/K < 1). The terms proportional to B? in
Egs. (38) correspond to the contributions of the noncore
regions to the elastic vortex attraction.

When calculating the contributions due to vortex
cores, the latter are usually considered as normal-phase
cylinders with radii & [2, 3]. However, the correspond-
ing contribution and the ratio of this contribution to the
noncore contribution may be determined more exactly.
With this aim one has to determine the strength of a
dilatation source created by an isolated vortex. This
strength is determined by the change in the volume due
to vortex formation. The latter quantity is equal to the
pressure  derivative of the vortex energy
(Do/4TIN?(InK + 0.08) [11], where ®, is a flux quan-
tum; A depends on pressure; and the terms containing
Ink correspond to the noncore region, whereas the
remaining terms correspond to the coreregion. Then, in
the vicinity of H,, the ratio of the core to the noncore
contributions to the vortex interactions equals
(0.08/Ink)?. If H,; < H < H,, (the distance between
vortices becomes less than the penetration depth (1 <
d/§ < K)), the contribution of noncore regions
decreases because of their overlap (see Eg. (38)),
although it remainsto be much larger than the core con-
tribution.

Consider the vortex interactions in a finite medium
with elastic anisotropy. Asusual [11], we first simplify
the free-energy expression. Integrating the terms with
@ in Eqg. (29) by parts with the boundary condition

n%—iﬁD - %eA%LHZ =0 (where n isthe normal to the

surface %) and using Eq. (30), we obtain
1./H® b 1

f = \—/J'[gt— §|L|"|4 + éAijkluijukl}dV-
Equation (39) is the extension of the well-known Abri-

kosov equation for free energy [11] to a deformable
medium.

At H < H,,, itis convenient to single out the vortex
quF'_

u;; , where the quantities |W;J? and u;; are determined
by Egs. (34) and (35), respectively. For vortices parallel

(39)

. . .. s
contribution by writing [W P = hand u; = u; +
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to the z axis, Egs. (32) and (33) for u; yield
uj = rk,}\ﬁil [hJ

1 iqr (40)

+ > Z [0:S(a)Gy(a) + 9;S(a)Gyi(a)Ih(g)e ™,

q#0
where S(q) = r;; ¢, Gy (@) = A0, and q = (G, Gy, 0)
is atwo-dimensional wave vector.

Taking into account the smallness of the coefficients
r in the calculations of h, one may limit oneself to the
first approximation with respect to ry;. Then, h Uhy + h;,
where h, is the solution of Eq. (30) at r; =0, and h; =
ij ui‘j’ /b isthefirst correction to this solution, which, in
the approximation under consideration, arises only in
the noncore regions. Equation (40) aso yields

rijUi; () = b(@)h(q) Ob'(@)hy(q), where

Erijrkl)\aill (q=0)
S(a)S(a)Gi(a), (q#0).

Thefunction b'(q) at q # 0 depends only on the orienta-
tion of the vector q. As a result, one the following
obtains [5] for the free energy described by Eq. (29):

fOf+b W% EhOD+<g|—;>

-2~ 33 b (@ho(aho(-a),
q

b'(q) = (41)

(42)

wherefs=-b*|W[*/2 and { = 1 + b'(0)/b. Thelatter term
corresponds to the contribution of elastic strains to the
energy of the vortex lattice, and the term containing g =
0 corresponds to the contribution of homogeneous
strains. Since the elastic constants enter thisterm in the
invariant combination (see Eq. (41) for b'(0)), thisterm
isindependent of the vortex orientation with respect to
the crystal lattice. Such a dependence may arise only
dueto thetermswith q # 0.

In the vicinity of H,,, the expression for the energy
of vortex interactions may be simplified if one takes
into account that these vortices form a regular lattice.
With this aim, we represent hy(c) as a sum over the

coordinates of the vortex centers, hy(c) = zi hg (¢ —

¢). Then, hyq)= S—lzij'hm(c ~ el =

S! Zi h(,l(q)e_iqpi (where Sis the area of the sample

section in the x, y plane). Substituting this expression
into Eq. (42), we may single out the interaction energy
by subtracting the terms containing the factors

e P’ & i = j. Then, taking into account that
St Zi exp(-igp;) = nd, o (where nisthe vortex den-
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sity and Q are the reciprocal-lattice vectors), we obtain
ho(q) = nhy,(q)d, o. The direct calculation shows that,
with an increase in g, the noncore contribution to hy,(q)
dramatically decreasesonly if q~ &!. Therefore hy,(Q)
may be approximated by its value at small wave vec-
tors. As a result, we obtain for the energy of vortex
interaction

) 2
i D—%hél(O){b'(O) +y b'(Q)} +525 b(a)

Q%0 g%0

2 ) 0
O-Zh6(0)Jb'(0) - B(Q)) 43)

O
+ > [p(Q)- Eb'(Q)EHEL

Q#0

where Q) = (21! J’z"b'(Q)dq; is the Q value

averaged over the orientations (it should be remem-
bered that b'(Q) is independent of the modulus of the
vector Q). We aso used here the relationship

1Y 4eob' @ = [0'(@da = [(2mqB@dg O
an (b'(Q)L, . An important conclusion following

from the expressions (43) isthat the vortex energy (bulk
part) is independent of the sample shape. This follows
from the fact that the spectrum of the wave vectors in
Eg. (43) has no terms with small wave vectors of the
order of thereciprocal of the sample size. The opposite
conclusion about the dependence of the interaction on
a sample shape drawn in [3] was based on the analysis
of only apart of the elastic interactions, i.e., of the sum
of pair interactions, each of which was calculated for an
infinite medium.

Thefirst term in parenthesesin Eq. (43) corresponds
to the interactions associated with the finite sample
dimensions, i.e., with the action of imaging forces,
whereasthe second term hasanonzero valueonly inthe
presence of elastic anisotropy. In the isotropic case
b'(0) =r?/K and b'(Q # 0) = r?/(K + 4p/3). Sincein the
limit p = o EQ. (43) should coincide with the first of
Egs. (38), we have

hes(0) = 2 W *€°Ink, (44)

where it was taken into account that nH&? = B/(2%*TtK)
and H; = 2'2kH_,/Ink. Equations (43) and (44) alow
one to calculate the energy of the vortex interactionsin
acrysta of finite dimensions. However, since the func-
tion b'(Q) depends on vector orientations in a rather
complicated way, the fina result may be obtained only
numerically and only for crystals of certain symme-
tries. Evaluating each of two terms in parentheses on
the right-hand side of Eq. (43) asbAK/K and taking into
account Eq. (44), we obtain the vortex interaction in the
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vicinity of Hg, as fi" = —102((Ink)/K)>(AK/K)B?, i.e.,
the value exceeding the core contribution by afactor of
~10?In%(K).

If H,, < H < H,,, the computations are more com-
plicated because one also has to take into account the
dependence of h,, on q in Eq. (42) with hy(q) =

S‘lzi h01(q)e_iqp‘. A similar calculation shows that in

this case hy,(0) = 2"21t|WE2Ink. However, now Q >
1/ and hy,(Q) = hy,(0)In(€~'Q™). By using the same
method, it is possible to obtain from Eq. (42), the rela
tionship for calculating the energy of the vortex interac-
tion for fields H,, < H < H,, having a more general
form than Eg. (43). At the same time, the result
obtained for the isotropic case allows us to conclude
that, in this field as well, the main contribution to the
strain-induced vortex interaction in superconductors
with high k values comes from the change of the order
parameter in noncore regions.

Thus, the results obtained show that in fields H <
Hg, the main contribution to the strain-induced vortex
interaction in superconductors with high K vaues
comes from the change in the order parameter in non-
core regions. The noncore contribution may exceed the
core contribution by one or even two orders of magni-
tude. Thisconclusion isvery important for studying the
orientations of the vortex structures in crystals. For
example, in the cases where the previous estimates
showed that the difference between the elastic energies
at various orientations of the vortex lattice is less than
the differences of the corresponding London energies,
the refinement of the eastic-interaction value may
change the conclusion about the prevalence of one or
another orientation.

Concluding the article, we would like to indicate
that the method considered above, which is based on
analysisof the case of anisotropic medium with aninfi-
nite shear modulus, considerably simplifiesthe calcula
tion of the contribution of long-range elastic interaction
to the energy of any one-dimensionally periodic struc-
turein afinite medium with arbitrary anisotropy. More-
over, this method is also effective in the cal cul ations of
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the striction contributions to the energy of two- and
three-dimensional regular structures in an isotropic
medium, e.g., for branching domains or systems of
guantum dots. This statement is based on the facts that,
asintheone-dimensional case, one may ignore herethe
near-surface distortions of such structures and that the
elastic contribution to the free energy in an isotropic
medium is independent of the orientation of the wave
vectors of the structure with respect to the crystal lat-
tice.
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