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Abstract
A phenomenological study of the (

√
3 × √

3)R30◦ ↔ (3 × 3) phase
transitions occurring in the adsorption systems Pb/Ge(111) and Sn/Ge(111)
is presented. The starting point of such a study is the Landau theory. The
critical behaviour expected theoretically for the two interfaces, and the
corresponding influence of defects, are discussed in detail. Symmetry
arguments show that, contrary to general belief, the critical behaviours of
Pb/Ge(111) and Sn/Ge(111) are essentially different. The Landau-like
approach employed to study the influence of defects provides a consistent
and general manner to interpret the existing experimental data. Special
attention is paid to the influence of hopping defects in Sn/Ge(111).

1. Introduction

The adsorption of Pb and Sn on Ge(111) has been a subject
of interest in surface science for many years, in particular
because these interfaces were considered model systems
to investigate the origin of ordered structures at surfaces
and its role in the formation of the metal/semiconductor
junction [1, 2]. A large number of ordered phases are observed
with varying the adsorbate coverage and the temperature
in these systems [3, 4]. Both Sn/Ge(111) and Pb/Ge(111)
interfaces exhibit a (

√
3×√

3)R30◦ structure (in the following√
3) at room temperature for a coverage of one-third of a

monolayer (ML) of adsorbate [3, 4]. The
√

3 phase has
been characterized using several different surface sensitive
techniques [5–9].

The
√

3 phase reverts to a (3×3) structure upon lowering
the temperature [10, 11]. This phase transition has received
a lot of attention (for an updated reference list, we refer the
reader to [12]). A crucial question behind this interest is
the microscopic origin of the phase transition. This question
has been controversial, and there is no consensus on the
topic (see e.g. [12]). In this paper we follow a different

approach, attacking the problem from a phenomenological
point of view. Our starting point will be the Landau theory
of phase transitions and its extensions. As we shall see,
such an approach allows one to have a unified view of the
subject, clarifying and systematizing existing experimental and
theoretical results. On the basis of this view, new results can
be obtained. Symmetry arguments, for instance, reveal that
the

√
3 ↔ (3 × 3) transition in Pb/Ge(111) is essentially

different from the phase transition in Sn/Ge(111), which has
been overlooked up to now. One of the extensions of the
Landau theory is the continuum-media theory of defects and
structural phase transitions (see, e.g., [13] and references
therein). This extension is of particular interest when
studying the aforementioned transitions in the Pb/Ge(111)
and Sn/Ge(111) interfaces. The properties of defects are so
accessible experimentally in these interfaces that they can
serve as model systems for the analysis of the behaviour of
defects in a system close to a phase transition, as well as for
the study of the influence the defects on the corresponding
transition. Indeed, experimental data already reported in the
literature reveal, for the first time, some interesting phenomena
related to defects. These phenomena correspond to certain
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Ge 1st layer Ge 2nd layerPb or Sn adatom

Figure 1. Ball model of the
√

3 structures of Sn/Ge(111) and
Pb/Ge(111).

cases contemplated in the aforementioned continuum-media
theory which, however, were not fully developed in the past.
The current experimental activity motivates us to develop these
cases here.

The paper is organized as follows. In section 2
we summarize the already reported structural data on
Pb/Ge(111) and Sn/Ge(111) interfaces, paying special
attention to the differences between the corresponding low-
temperature structures relevant to our phenomenological
analysis. In section 3 we present such an analysis based on
a phenomenological Landau-like theory for the

√
3 ↔ (3×3)

transitions in Pb/Ge(111) and Sn/Ge(111). In section 3.1,
considering perfect interfaces, we discuss the corresponding
critical behaviours. In section 3.2 we take into account the
influence of defects. We first discuss some general aspects of
this influence (section 3.2.1), and then we focus our attention
on the influence of hopping defects (section 3.2.2). We show
that

(i) the different characteristic temperatures reported for the
Sn/Ge(111) interface follow naturally from the presence
of hopping defects and

(ii) the characteristic length of the defect-induced order-
parameter modulation may exhibit no anomaly at the
transition point.

Some consequences of this latter possibility are further
explored in section 3.2.3. Section 4 is devoted to conclusions.

2. Summary of structural data

2.1. High temperature: (
√

3 × √
3)R30◦ phase

The
√

3 structure is observed at room temperature for
both Pb/Ge(111) and Sn/Ge(111) interfaces, at an adsorbate
coverage of 1/3 ML. Pb or Sn adatoms occupy substrate T4

sites [5, 6] (see figure 1). The
√

3 structure corresponds to the
space group symmetry p31m. At low temperature, Pb/Ge(111)
and Sn/Ge(111) present, however, some important differences.

2.2. Low temperature: Sn/Ge(111)-(3 × 3)

Scanning tunnelling microscopy (STM) and low-energy
electron diffraction (LEED) results [11] show that adatom
sites in Sn/Ge(111) become inequivalent at low enough
temperatures, as a (3×3) structure is formed. In consequence,
there is a translational symmetry breaking in the interface

Sn1 Sn2 Sn3

Ge 1st layer

Ge 2nd layer

Figure 2. Sn/Ge(111)-(3 × 3) surface unit cell. Ge atoms in the
second layer (•) are equivalent.

Pb1 Pb2 Pb3

Ge 1st layer

Ge 2nd layer

Figure 3. Pb/Ge(111)-(3 × 3) surface unit cell. Ge atoms in the
second layer (• and ◦) are not equivalent due to different
displacements; see [16].

associated with the formation of a (3×3) structure. Surface x-
ray diffraction experiments [14, 15] have shown that the point
symmetry of this (3×3) structure coincides with that of the

√
3

one (see figure 2). The space group symmetry of Sn/Ge(111)-
(3 × 3) is p3m1.

2.3. Low temperature: Pb/Ge(111)-(3 × 3)

The behaviour of Pb/Ge(111) is somewhat more complicated.
In this case, the corresponding (3 × 3) structure implies
not only the non-equivalence of adatom sites, as revealed
by STM [11], but also the non-equivalence of Ge atoms in
the second layer of the substrate, as shown by surface x-ray
diffraction experiments [16, 17] (see figure 3). In addition
to the translational symmetry change, mirror planes are also
now eliminated. The resulting symmetry group of Pb/Ge(111)-
(3 × 3) is therefore p3.

There is, however, a different possibility to explain the
behaviour of the Pb/Ge(111) interface. We note that, while
the (3 × 3) structure appears at ∼250 K, the data showing
p3 symmetry were obtained at 50 K [16, 17]. Therefore, the
total lowering of symmetry in Pb/Ge(111) could take place
in two steps: a first phase transition would give rise to the
appearance of a (3 × 3) structure with p3m1 symmetry and a
second phase transition would lower this symmetry to p3, with
no increase of the unit cell. If this were the case,

√
3 to (3×3)

transitions in both Pb/Ge(111) and Sn/Ge(111) systems would
be equivalent, but an additional phase transition would exist
in Pb/Ge(111) at a lower temperature. We note that nothing
prevents a second phase transition from also being observed
for Sn/Ge(111) at lower temperatures than so far used; in
this case both interfaces would behave in a similar way. To
our knowledge Pb/Ge(111) has not been studied enough to
confirm any of the above described possible scenarios (one
or two different phase transitions). In view of this lack of
experimental information, we assume in the following that the
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p31m

( × º

p3

p3m1

(3×3)

Pb/Ge(111)

Sn/Ge(111)

Figure 4. Elements of point symmetry in the unit cell of the
corresponding structures of the Sn/Ge(111) and Pb/Ge(111)
interfaces (�, three-fold axis; , mirror plane).

√
3 to (3 × 3) phase transition in Pb/Ge(111) is p31m → p3,

i.e., that this phase transition and the one in the Sn/Ge(111)
interface are different.

We conclude that the corresponding order parameters
of the phase transitions in Pb/Ge(111) and Sn/Ge(111)
transform according to different irreducible representations of
the p31m space group of their

√
3 structures (see figure 4).

In other words, there are two different, non-related order
parameters. This leads to important consequences, already
at the phenomenological level, as shown below.

3. Landau theory and its extensions

We expose in the following the phenomenological study of the√
3 ↔ (3 × 3) phase transitions occurring in Pb/Ge(111) and

Sn/Ge(111) interfaces. We consider first ideal interfaces.

3.1. Perfect interfaces

The starting point in this phenomenological study is to
construct the corresponding Landau free energy or, in terms
of the modern theory, the Landau–Ginzburg–Wilson (LGW)
Hamiltonian. To this end, we must take into account the
symmetry of the phases involved in the transition.

The problem has been already studied for any
structural phase transition taking place in a two-dimensional
system [18, 19]. In the case of the

√
3 to (3 × 3) transition in

Sn/Ge(111) (p31m → p3m1), the following Hamiltonian is
obtained:

H (Sn)

LGW = A

2
(η2

1 + η2
2) +

s

3
(η3

1 − 3η1η
2
2) +

B

4
(η2

1 + η2
2)

2

+
D

2
[(∇η1)

2 + (∇η2)
2], (1)

where η1 and η2 are the two components of the order parameter.
The LGW Hamiltonian for the

√
3 to (3 × 3) transition in

Pb/Ge(111) (p31m → p3) is, however,

H (Pb)

LGW = A

2
(η2

1 + η2
2) +

B

4
(η2

1 + η2
2)

2 +
C1

6
(η2

1 + η2
2)

3

+
C2

6
(η3

1 − 3η1η
2
2)

2 +
D

2
[(∇η1)

2 + (∇η2)
2]. (2)

3.1.1. Landau theory. Within the simplest Landau approach,
the above Hamiltonians are considered as the non-equilibrium
free energies of the systems. A phase transition then takes

place if the coefficient at the quadratic term goes through
zero to become negative. In the Landau theory it is assumed
that the dependence of this coefficient on a control parameter
(temperature in our case) is analytical, and thus it can be
represented as a Taylor series. In practice, only the first term
of this series is taken into account: A ∝ T − Tc. In the other
coefficients, the first term of their Taylor series is a constant.

Already at this level, some differences can be noticed
between the

√
3 ↔ (3 × 3) phase transitions in Sn/Ge(111)

and Pb/Ge(111). While the former transition should be
discontinuous according to the Landau theory, the latter can
be continuous. The discontinuity is due to the third-order
invariant present in equation (1) which is absent in equation (2).
It is worth mentioning that if this discontinuity is not strong,
i.e., if the corresponding first-order phase transition is close to
being a second-order one, the Landau approach is, in principle,
applicable.

3.1.2. Small fluctuations. The assumptions of the Landau
theory described above proved to be unjustified close to
the transition. The crucial point to understand why is the
following. The temperature dependence of any material
coefficient playing the role of a ‘generalized rigidity’ (in
our case, the coefficient corresponding to the ‘internal
deformations’ described by the order parameter) is due to the
influence of thermal motion (fluctuations) of other degrees of
freedom of the system. Landau tacitly assumed that the only
degree of freedom that ‘feels’ the phase transition is the one
describing the long-range order, i.e., the mean value of the
order parameter over the sample volume. However, this idea
is not fully consistent. Let us consider the case of a spatially
inhomogeneous order parameter, which indeed would rather
describe not the long-range order but rather the short-range
one. The fluctuations of the degrees of freedom associated
with this inhomogeneous order parameter increase close to the
phase transition point, so these degrees of freedom also ‘feel’
the transition.

As long as fluctuations are not too large, their influence
can be treated within a first order perturbation theory. The
trends revealed in this way are usually are confirmed and
specified within a much more involved theory valid for large
fluctuations, i.e., in the range close to the phase transition
(scaling region). An example of such a trend is the case
of the first-order transition that, within the Landau theory, is
expected in Sn/Ge(111). In this case, and due to this effect, the
discontinuity in the order parameter diminishes. Indeed, the
coefficient of the third-order invariant in equation (1), being
renormalized by fluctuations, becomes temperature dependent
and decreases when A diminishes, i.e. as the stability limit (the
spinode point) of the symmetric phase is approached:

s −→ s∗ ≈
A→0

s[1 − BT/(AD)]. (3)

It is impossible to conclude, within this first-order perturbation
theory, whether this renormalized value of the coefficient s in
equation (1) goes to zero at the phase transition point itself,
i.e. whether the first-order transition becomes a second-order
one. However, this conclusion has already been proved exactly,
using a theory valid for large fluctuations [20].

The condition of applicability of the first-order
perturbation theory is, in fact, the same as that of the Landau
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theory. It has been obtained by different reasonings by
several authors (see [21–23]) but it can also be deduced from
equation (3). For two-dimensional systems it reads

T B/(AD) 
 1, (4)

where it is assumed (as well as in equation (3)) that the
coefficients of all the terms of fourth order in equations (1)
and (2) are of the same order of magnitude. The real meaning
of this condition, i.e., whether the region of applicability of the
Landau theory exists or does not exist at all, depends on the
numerical values for the coefficients.

Two opposite limiting cases are usually considered when
analysing structural transitions: displacive and order–disorder
transitions (see, e.g., [24]). Assuming that the maximum,
i.e. the ‘atomic’, value of the order parameter is equal to
unity, the coefficients in the corresponding Landau free energy
are estimated as A = (T − Tc)/ l2

at, B ∼ �/ l2
at and D ∼

�, where lat represents the interatomic distance and � ∼
Tat = 104–105 K for displacive transitions and � ∼ Tc for
order–disorder ones1. Substituting in equation (4) one finds
(T − Tc) � Tc in both displacive and order–disorder cases2.
This means that already at (T − Tc) ∼ Tc one may be at the
boundary of applicability of the Landau theory (this should
not be understood literally: the estimations are rather rough).
In other words, the temperature dependences given by the
Landau theory are not trustworthy in the region (T −Tc) 
 Tc

where the Landau theory itself is not applicable. This does not
mean, however, that the Landau theory is completely useless.
Its qualitative conclusions based on symmetry arguments and
even order-of-magnitude estimations can still be useful. This is
convenient because the Landau theory is simple; but of course,
one has to be aware of its limitations.

Let us underline that the non-applicability of the Landau
theory does not necessarily mean that the scaling laws can
be immediately applied. These laws, having an asymptotic
character, are expected to be valid when (T − Tc) 

Tc. The corresponding range where the order-parameter
fluctuations are very large is conventionally called the ‘scaling’
or ‘fluctuation’ region. This range may be very narrow and
may not coincide with the range studied experimentally. But,
of course, it is quite useful to know what can be expected in
this region (see also below).

3.1.3. Dynamics. The dynamics of the corresponding order
parameter is expected to be vibrational-like for displacive
phase transitions and relaxational-like for order–disorder ones.
A naive approximation consists in writing down the equation
of motion for the component η1 (and the analogous one for η2):

mη̈1 = −
(

∂ HLGW

∂η1

)
η2

+ ∇
(

∂ HLGW

∂(∇η1)

)
η2

(5)

1 We note that the labels ‘displacive’ and ‘order–disorder’ have been used
in a different way in the literature related to Sn/Ge(111) and Pb/Ge(111). In
this paper we restrict ourselves to this ‘definition’, commonly employed when
dealing with structural phase transitions.
2 This is a specific feature of the two-dimensional case. The three-
dimensional displacive systems have an appreciable region of applicability
of the Landau theory, unlike the three-dimensional order–disorder ones (in
the absence of special mechanisms of suppression of critical fluctuations,
e.g. long-range forces, which frequently occur).

in the displacive case. In the order–disorder case we have

γ η̇1 = −
(

∂ HLGW

∂η1

)
η2

+ ∇
(

∂ HLGW

∂(∇η1)

)
η2

, (6)

where γ has the meaning of a generalized kinetic coefficient.
Let us assume that the dynamics of the order parameter

corresponds to the displacive case. The frequencies of
small vibrations can be obtained after linearization of the
corresponding equations of motion close to η1 = η2 = 0
in the symmetric phase, and close to spontaneous values of η1

and η2 in the non-symmetric phase. The vibrations obtained
by this procedure seem doubly degenerated in the symmetric
phase, but in our case [Pb/Ge(111) and Sn/Ge(111)] this simply
means that ω(k) = ω(−k). In the non-symmetric phase, these
vibrations correspond to the centre of the Brillouin zone and
the ‘degeneration’ is removed. This result of the Landau theory
depends neither on the highest power of the order parameter
taken into account nor on the temperature dependence of the
coefficients, and is valid beyond the region of its applicability
as well.

According to the above ‘naive’ approximation, ‘soft
modes’, i.e., frequencies tending to zero at the phase transition
point, should be observed. It is worth noticing that, in fact, no
system is known where this ‘naive’ expectation for a displacive
transition is fulfilled. Experimentally, the order parameter
dynamics is always more complicated than the prediction given
by equation (5). The soft mode frequency is always finite at the
phase transition point, and it is accompanied by the so-called
central peak (see, e.g., [25]).

The nature of this central peak is controversial, and its
origin can be different in different systems. The simplest
example where the central peak appears is in the case of
coupling of the order parameter to a system of hopping
defects [13, 26, 27]. This implies a relaxational order-
parameter dynamics at low enough frequencies. This seems
to be the case of the Sn/Ge(111) interface, as we shall see at
some length below.

3.1.4. Large fluctuations. In the critical (scaling) region the
temperature, wavevector and other dependences are power-
like with exponents depending on the form of the LGW
Hamiltonian, i.e., on the symmetry properties of the order
parameter of the system.

The LGW Hamiltonian equation (1) coincides with the
Hamiltonian of the three-state Potts model. The critical
behaviour of this model is as follows [28]. The order parameter
modulus vanishes at the critical temperature Tc as ∼ tβ with
β = 1/9, where t = (T − Tc)/Tc is the reduced temperature.
The order parameter correlation length ξ diverges as ∼ |t |−ν

with ν = 5/6, and the susceptibility χ as ∼ |t |−γ with
γ = 13/9. Critical indices β and ν have been confirmed in
an He atom scattering experiment for Sn/Ge(111) [29]. This
is fairly surprising because it implies that the frozen-in defects
do not influence or are practically absent in the system. We
recall that for three-dimensional systems these defects seem to
overshadow the critical behaviour [13].

The LGW Hamiltonian equation (2) coincides with the
Hamiltonian of the XY model with sixth-order anisotropy. The
critical behaviour of this model is completely different from the
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three-state Potts model. Upon lowering the temperature, first
an upper critical temperature is crossed, reaching a Kosterlitz–
Thouless region of critical points with continuously varying
exponents. Then, a second critical temperature is crossed into
an ordered phase [30]. Unfortunately, data on temperature
dependence of the order parameter in Pb/Ge(111) are not
available at the moment. It would be very interesting to
compare the critical behaviour of the two systems.

3.2. Defects

It has been assumed up to now that we are dealing with perfect
interfaces. However, defects seem to play a ‘special role’
in the phase transitions that we are considering, as seems to
be explicitly revealed for the Sn/Ge(111) interface [31]. A
theoretical discussion on this ‘special role’ has been made
on the basis of numerical calculations [32], which makes it
somewhat difficult to extract the relevant information. On the
other hand, we note that experimental data [31] also reveal
some interesting features not yet discussed in detail (e.g., the
absence of anomaly in the characteristic length of the defect-
induced order-parameter modulation at the transition point).
In the following we summarize the continuum-media approach
and further develop it to explain these features.

3.2.1. Overview. It is convenient to discuss first some general
aspects. Defects can be treated as a perturbation of the ideal
crystal matrix whenever the defect concentration is much less
than the concentration of the host atoms. The characteristic
length of such a perturbation is the correlation length [13].
Its value considerably exceeds the interatomic distance when
approaching the phase transition. The defect perturbation
can then be treated within a continuum-media approximation.
Within this approximation, the system is described by the
Landau thermodynamic potential. The defects are modelled
as local changes in the corresponding coefficients (non-
symmetry-breaking defects) and/or local appearance of new
terms (symmetry-breaking defects).

When dealing with the phase transition anomalies, the
most important contribution of the non-symmetry-breaking
defects is given by

A(r)η2 (7)

in the corresponding Landau potential (we consider here a one-
component order parameter for the sake of illustration). The
function A(r), describing a defect-induced inhomogeneity, can
normally be understood as a local change of the transition
temperature. In consequence, this type of defect is known
as random local transition temperature defects or T -defects.

In the case of symmetry breaking defects, the most
important term induced is linear in η:

h(r)η. (8)

As a result of this term,a non-zero value of η arises even above

the phase transition. The function h(r) plays the role of the
defect-induced field conjugated to the order parameter. Indeed,
in this case, one usually speaks of random local field defects.
These two types of defects are the only ones relevant for further
discussion.

We have so far tacitly assumed that defect parameters
do not vary with time, i.e., that they are ‘frozen-in’
defects. However, depending on the relation between the
characteristic measurement time and the relaxation time of
the defects (i.e. the time needed by a defect to abandon
its initial state), it may be necessary to take into account
possible changes in the defect state. In this case we are
dealing with the so-called mobile or hopping defects. It is
well known, for instance, that hopping symmetry-breaking
defects strongly affect the corresponding phase transition
temperature [26]. Experimental examples of such an influence
are well documented in KTaO3:Li [33]. This crystal is an
incipient ferroelectric in the absence of Li dopants, i.e. its
‘transition temperature’ is negative and close to zero. The
Li dopants act as orientable dipoles (hopping random-local-
field defects). As a result of these new degrees of freedom, the
resulting transition temperature may be high enough to permit
that the phase transition takes place. This phenomenon, i.e. the
increase of the corresponding phase transition temperature due
to the presence of hopping defects, also seems to be observed
in the Sn/Ge(111) interface [31]. In the next section we analyse
this observation and related phenomena in detail.

3.2.2. Defects and the
√

3 ↔ (3×3) transition in Sn/Ge(111).
The transition temperature of the

√
3 ↔ (3 × 3) phase

transition in Sn/Ge(111) is obtained in [31] as the temperature
where the (3 × 3)-ordered region of the structure extrapolates
to infinity. We note that the (3 × 3) ordering was assumed
to be induced by symmetry-breaking defects. A remarkably
different temperature is obtained from He atom scattering
experiments [29]. As a result, microscopic models were
proposed in order to explain this difference [32]. In this
section we discuss possible causes of this apparent discrepancy.
In particular, we show that it can be one more example
of the above mentioned phenomenon connected to hopping
defects (a similar behaviour was theoretically predicted [26]
and experimentally observed [33] in several other systems
a long time ago). First of all, it is convenient to analyse
the specific features of the defect-induced order-parameter
modulation expected in this case, irrespective of the hopping
of the defects.

(a). Defect-induced order-parameter modulation. Let us
consider a defect inducing an order-parameter modulation such
that η1 �= 0, η2 = 0. In the linear approximation (see, e.g.,
[13, 27]), the equation for this defect-induced order parameter
ηdef reads

(A + 2sη1,∞ + 3Bη2
1,∞)ηdef − D∇2ηdef = hδ(r) (9)

in accordance with equation (1), where h is the defect strength
and η∞ represents the (constant) order parameter far enough
from the defect. Let us assume that far enough from the defect
η2 = 0 also (which implies s < 0). Then η1,∞ can be taken as
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η1,∞

=




0 (symmetric phase),

|s|
2B

(
1 +

√
1 − 4

AB

s2

)
(non-symmetric phase),

(10)

and the (first-order) phase transition takes place at Ac =
2
9

s2

B . The latter condition, which can be obtained from the
continuity of the free energy at the transition point, defines the
corresponding transition temperature T◦

c .
Within this linear approximation, ηdef is given by

ηdef(ρ) = h

2π D
K0(ρ/ρc), (11)

where K0 is the MacDonald function, ρ is the distance to the
defect and

ρc =
{

(D/A)1/2 (A > Ac),

[D/(A + 2sη1,∞ + 3Bη2
1,∞)]1/2 (A < Ac).

(12)
In the absence of defects, the magnitude ρc coincides with the
characteristic length of the thermal fluctuations of the order
parameter, so it represents the ‘bare’ correlation length. It
is worth mentioning that the defect-induced order parameter
amplitude (11) decays as ∼(ρc/ρ)1/2 exp(−ρ/ρc) for ρ � ρc.
In [31, 32], however, a different form ∼ exp(−ρ/ρc) was used
to fit the experiments.

In equation (11) we see that, as long as the transition
is of first order (s �= 0), the width of the defect-induced
modulation does not become infinite at the transition point.
Such a divergence is possible only if the transition is continuous
(s = 0) and takes place at Ac = 0, and a similar situation takes
place if the defects are hopping defects, as they are considered
in [31, 32]. In this case one has to bear in mind that, even if the
phase transition is continuous, it takes place at a point where
the coefficient A is not zero [13, 27]. Consequently, although
the magnitude ρc can be quite large, it should remain finite
at the transition point. Let us examine this question in more
detail.

(b). Free energy contribution due to the system of hopping
defects: shift of the transition temperature. The Sn/Ge(111)
interface presents a significant concentration (∼1%) of Ge
substitutional atoms and vacancies [32]. These substitutionals
and vacancies may act as hopping random-local-field defects:
depending on the position where one such a defect was located,
one of the three possible ‘domains’ of the (3 × 3) phase is
induced [31, 32]. It is known that hopping defects result in
new variables of the system that, being linearly coupled to
the order parameter [13, 27], give rise to an increase of the
corresponding transition temperature. Let us estimate such an
increase for the case of Sn/Ge(111).

Following e.g. [13, 27], the contribution to the free energy
of the system due to the hopping defects can be written as

def =
∑

i

Nii + �def, (13)

where Ni is the number of defects inducing the i ‘domain’
(i = 1, 2, 3 in Sn/Ge(111)), i are the corresponding

contributions to the energy due to isolated defects and �def is
the contribution associated with the fluctuations in Ni (i.e. the
entropy of the system of (independent) defects). To further
progress, it can be assumed that far enough from the defects
the order parameter takes the value (η1, η2) = (η∞, 0). Thus,
the above energies can be taken as

1 � d(η∞ − ηd)
2, (14a)

2 = 3 � d [(η∞ + 1
2ηd)

2 + 3
4η2

d ], (14b)

where d � π D ln−1[πρc/(2d)] and ηd � ηdef(d), with d
indicating the dimensions of the defect core (which can be
taken as an atomic distance) [27].

Close to the transition point, the contribution � due
to fluctuations can be calculated as follows. Let w be the
probability of finding the system in a given configuration of
defects, N the total number of defects and Pi the probabilities
that a given defect is in the corresponding i state. We then
have

w = N !∏3
i=1 Ni

3∏
i=1

P Ni
i . (15)

By putting Ni = (N/3)(1 + ξi), with ξi 
 1 and
∑

i ξi = 0,
and assuming that N � 1, we further get

�def = −T ln w ≈ N T

6
(ξ 2

1 + ξ 2
2 + ξ 2

3 ). (16)

The free energy per unit volume can then be written as

tot � 0 +
Aηη

2
η2

∞ +
s

3
η3

∞ +
B

4
η4

∞ + Aηξη∞ξ1

+
nT

6
(ξ 2

1 + ξ 2
2 + ξ 2

3 ), (17)

where Aηη = A + nd and Aηξ = −ndηd , with n being the
concentration of defects. As we see, the presence of hopping
defects results in both a renormalization of the coefficient A,
and the appearance of the new variables ξi (accounting for the
influence of the new degrees of freedom associated with the
hopping of the defects), linearly coupled with η∞. The former
is due to the energy associated with the presence of defects
itself (it comes from the first sum in equation (13)). As a result
of the linear coupling between ξ1 and η∞, the phase transition
temperature is increased (see below).

Given the form of the free energy (17), and taking into
account that

∑
i ξi = 0, we then have ξ2 = ξ3 = −ξ1/2.

Consequently,

tot = 0 +
Aηη

2
η2

∞ +
s

3
η3

∞ +
B

4
η4

∞ + Aηξη∞ξ1 +
Aξξ

2
ξ 2

1 , (18)

where Aξξ = nT/2. Further minimization over ξ1 yields

tot = 0 +
A∗

2
η2

∞ +
s

3
η3

∞ +
B

4
η4

∞, (19)

where A∗ = Aηη − A2
ηξ/Aξξ . This implies that the actual

transition temperature is

Tc ∼ T ◦
c +

n

nat

(
η2

d

�

Tc
− 1

)
�, (20)

where T◦
c is the transition temperature in the absence of defects

and nat = l−2
at .
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In order–disorder systems, this transition temperature
almost coincides with T◦

c , as long as � ∼ Tc for these systems
and the defect parameters are such that η2

d < 1, n/nat 
 1.
In displacive systems, however, this temperature may be quite
different from T◦

c : with η2
d ∼ 1 and n/nat ∼ 10−4, for instance,

we obtain Tc − T◦
c ∼ 100 K (recall that � ∼ Tat ∼ 104–105 K

in displacive systems). This latter possibility can explain the
two different temperatures found in [31] and [29].

(c). Characteristic length of the defect-induced modulations:
possibility of no anomaly at the phase transition point. It is
worthwhile to explore further consequences of this separation
of the characteristic temperatures T◦

c and Tc. As exposed
above, the two temperatures can be very different in displacive
systems. Let us focus our attention on the characteristic
length of the defect-induced order-parameter modulation. The
temperature dependence of this length has been studied in [31]
for the Sn/Ge(111) interface. The slope of the squared inverse
of this length does not change when crossing the real transition
temperature. This is quite surprising. In a pure sample and
within the Landau theory, this slope is expected to be A′

ηη/D
in the symmetric phase, where primes denote the derivative
with respect to temperature (see equation (12)). In the non-
symmetric phase, however, it is expected to be −2A′

ηη/D if
the transition is continuous. Similarly, some anomaly should
also be observed if the transition is discontinuous. As we
shall see, the explanation of what is observed in [31] could be
connected to the above mentioned separation of characteristic
temperatures due to hopping defects.

To analyse the particular case of Sn/Ge(111) is somewhat
cumbersome, and not very instructive. The relevant effects
can be more easily revealed by analysing the case of a
continuous transition with a one-component order parameter
(two domains). In this case, the equation for the defect-induced
order-parameter modulation can be written as

(A + 3Bη2
∞)ηdef − D∇2ηdef = ±hδ(r), (21)

where the different signs account for the two possible different
states of the defect. The solution to this equation is of the form
equation (11), with

ρc =
{

(D/A)1/2 (symmetric phase),

[D/(A + 3Bη2
∞)]1/2 (non-symmetric phase).

(22)
To find the phase transition point and the value η∞ taking into
account the influence of hopping defects, we can proceed as in
section 3.2.2b. In order to reveal the effects we are interested in,
it is necessary to compute the free energy of the system taking
into account fourth-order terms in the variables ξi associated
with the hopping defects. As a result, we find that

η2
∞ =




0, if Aηη > A2
ηξ/Aξξ ,

− Aηη − A2
ηξ/Aξξ

B̃
, if Aηη < A2

ηξ/Aξξ ,
(23)

where Aηη = A + 2nd , Aηξ = −2ndηd , Aξξ = nT and
B̃ = B + Bξ A3

ηη/(Aξξ A2
ηξ ); with d � π D ln−1[πρc/(2d)],

ηd = ηdef(d) and Bξ = nT/3 (n is the concentration of
defects and d indicates the dimensions of the defect core). As

we see, the phase transition temperature Tc is now defined
by the condition Aηη = A2

ηξ/Aξξ . It can be estimated as

Tc � T◦
c + n

nat
(η2

d
�
Tc

−1)�, where nat = l−2
at and T◦

c would be the
transition temperature in the absence of defects. As in the case
previously discussed for the Sn/Ge(111) interface, this shift in
the transition temperature is negligible in the order–disorder
case but it may not be in the displacive case.

We are now in a position to discuss the temperature
dependence of the characteristic length of the defect-induced
order-parameter modulation. By putting Aηη = (A2

ηξ/Aξξ )(1+
a) we find that, close to the transition point, the characteristic
length (22) of the defect-induced order parameter in the non-
symmetric phase (a → 0−) is actually such that

ρ−2
c = ρ−2

c,0

(
1 + a − 3a

1 + κ(1 + a)3

)
, (24)

where ρ−2
c,0 = A2

ηξ/(Aξξ D) ∼ η2
d(n/nat)(�/Tc)l2

at and κ =
(Bξ /B)(Aηξ/Aξξ )

4 ∼ η4
d(n/nat)(�/Tc)

3. The case where
κ 
 1 may occur for weak enough defects and/or for a small
enough concentration of them. Indeed, the occurrence of this
case is unavoidable in order–disorder systems, where � ∼ Tc.
We then have (

ρ−2
c − ρ−2

c,0

)
/ρ−2

c,0 ≈
a→0−

−2a, (25)

and the above expectation is confirmed: in the non-symmetric
phase, (ρ−2

c )′ � −2ρ−2
c,0a′ ∼ −2A′

ηη/D. But one has to
realize that, in a displacive transition, the case where the defect
parameters are such that κ � 1 is also well possible. This
implies a fairly high concentration of relatively strong defects:
η4

d(n/nat) � 10−6–10−9. In this case:(
ρ−2

c − ρ−2
c,0

)
/ρ−2

c,0 ≈
a→0−

a + (9/κ)a2 (26)

and, consequently, by crossing the transition point no change in
the slope ofρ−2

c will be observed. Indeed no change is expected
up to temperatures such that 9|a|/κ ∼ 1. This could imply
temperatures of the order of the phase transition temperature
itself [34]3.

It is worth noticing that in these estimates no ‘special’
values of the coefficients are chosen, but a high enough
concentration of defects and/or a high enough strength of
them (within the applicability of the theory). Therefore,
this effect may occur in another displacive phase transition
provided that hopping defects are present. Indeed it can be
seen that it is just the case for the (displacive) transition in
the Sn/Ge(111) interface. To reproduce the corresponding
increment in the phase transition temperature here, the range
of defect parameters is such that η2

d(n/nat) ∼ 10−4. This
falls into the latter case where κ � 1 (it is possible that, e.g.,
η2

d ∼ 1 and n/nat ∼ 10−4 and, consequently, κ ∼ 100).
Thus, this could explain the observation reported in [31] of the
lack of anomaly associated with the crossing of the transition
temperature in the defect-induced modulation of the order
parameter (see figure 5).

3 At this point,one should notice that,depending on the defect parameters,our
formalism to treat the influence of defects is justified close to the real transition
temperature (T → Tc), but it might not be in the immediate vicinity of the
bare transition point (T → T◦

c ). The corresponding criterion of applicability
can be obtained following Levanyuk and Sigov [34].
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Figure 5. Possible behaviours of the characteristic length of the
defect-induced modulation of the order parameter.

3.2.3. Defects and phase transition anomalies.

(a). Frozen-in defects. Frozen-in defects give rise to
deviations in phase transition anomalies from the behaviour
expected for perfect systems. Elementary considerations
indicate that these deviations should be similar to those due
to thermal fluctuations. Random-local-field defects can be
regarded as something like ‘frozen fluctuations’ of the order
parameter, so their influence can be even stronger. In fact,
it can be proved that, in the region of applicability of the
first-order corrections to the Landau theory, there exists a
crossover between a region where the anomalies are driven
by thermal fluctuations (far from the transition point) to a
region where they are driven by defects (not so far from
the transition point) [13]. For the sake of illustration, let
us consider the x-ray scattering intensity in the vicinity of a
Bragg peak (diffuse scattering): I (k) ∝ 〈η(k)η(−k)〉. This
intensity contains the contributions due to both thermal and
defect-driven fluctuations. The two contributions are additive
in the region of applicability of the first-order corrections to
the Landau theory [13]. Thermal fluctuations of the order
parameter are such that

〈η(k)η(−k)〉T = T

A + 3Bη2
0 + Dk2

(27)

while the defect-driven fluctuations are

〈η(k)η(−k)〉def = nh2

(A + 3Bη2
0 + Dk2)2

. (28)

(Hereafter we restrict ourselves to continuous transitions.)
Here n is the defect concentration, h is the corresponding defect
strength and η0 is the value of equilibrium of the modulus of
the corresponding order-parameter (η0 = 0 in the symmetric
phase). In this case, the phase transition point is defined by the
condition A = 0. The different dependences on A+3Bη2

0 +Dk2

in these expressions permit the above mentioned crossover.
For small wavevectors, it takes place at Across ∼ nh2/Tc in the
symmetric phase. That is (Tcross −Tc)/Tc ∼ (n/nat)(Tat/Tc)

2

for strong defects.
To date there is no theory taking into account the presence

of defects, analogous to the theory developed for the scaling
region in perfect systems [35]. However, there is no reason to
expect that in this region the anomalies are driven by thermal
fluctuations only. Indeed, there is no experimental example

in 3D systems where the thermal-fluctuation-driven critical
behaviour is observed unambiguously [36]. There are also
examples in 2D of this difficulty [37, 38]. However, in other
interfaces which are far from being perfect, this behaviour
seems to have been observed [29, 39].

(b). Hopping defects. As we have seen, defects can be
understood as additional degrees of freedom of the system
(see, e.g., [40, 41]). Then, if a system contains hopping defects
only, the corresponding critical behaviour is obtained from the
theory for a perfect crystal. The presence of both frozen-in and
hopping defects, being more natural, is more intriguing. When
computing the critical scattering, for instance, one must bear in
mind that, as we have seen, there can be a significant increase of
the transition temperature, which is not observed in the defect-
induced order-parameter modulations. This implies some
dependence of the coefficients of the corresponding Landau
potential on the distance or, equivalently, some wavevector
dispersion of these coefficients:

A −→ A(k) =
{

Ã (k 
 l−1
d ),

A (k � l−1
d ),

(29)

where Ã results from the above mentioned renormalization
due to the hopping of the defects ( Ã = 0 at the transition
point), and ld is the characteristic distance between defects.
This dispersion must be taken into account when computing
the thermal fluctuations of the order parameter, i.e., A must be
replaced by Ã in equation (27) for small enough wavevectors.
The fluctuations due to frozen-in-defects, however, are not
affected by this dispersion as long as they are connected to
the properties of the system at distances smaller than the
distance between defects, i.e., equation (28) remains valid. In
consequence, the defect contribution to the diffuse scattering,
unlike to the thermal one, will show no anomaly at the real
transition point, but it will do close to the minimum of A+3Bη2

0 .

4. Conclusions

The
√

3 ↔ (3 × 3) phase transitions occurring in
Pb/Ge(111) and Sn/Ge(111) interfaces are studied within
the phenomenological Landau theory and its extensions.
Symmetry arguments reveal that the critical behaviours
theoretically expected for these transitions are essentially
different. The influence of defects in these transitions
is discussed in detail. We propose that the experimental
observation of no anomaly of the ‘bulk’ correlation length at
the phase transition temperature in Sn/Ge(111) is explained as
a result of the presence of hopping defects. This phenomenon
is shown to be of general character, and could also be observed
in other systems.
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