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We comment on zero- and low-temperature structural phase transitions, expecting that these
comments might be relevant not only for this structural case. We first consider a textbook
model whose classical version is the only model for which the Landau theory of phase tran-
sitions and the concept of “soft mode” introduced by Ginzburg are exact. Within this model,
we reveal the effects of quantum fluctuations and thermal ones at low temperatures. To do so,
the knowledge of the dynamics of the model is needed. However, as already was emphasized
by Ginzburg et al. in eighties, a realistic theory for such a dynamics at high temperatures is
lacking, what also seems to be the case in the low-temperature regime. Consequently, some
theoretical conclusions turn out to be dependent on the assumptions on this dynamics. We
illustrate this point with the low-temperature phase diagram, and discuss some unexpected
shortcomings of the continuous medium approaches.
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1. INTRODUCTION

Zero- and low-temperature (T) phase transi-
tions are nowadays a subject of great interest (see,
e.g., Refs. [1–5] for recent reviews). The special case
of structural phase transitions deserves, in our opin-
ion, a special attention. First, it is very convenient
when introducing the topic of low-T phase transitions
although, to the best of our knowledge, this peda-
gogical facet of the structural case has not been de-
veloped in the literature. One of the purposes of the
present paper is just to develop this facet. Second, the
discussion of structural transitions allows to reveal
some unsolved problems which might have a fairly
broad interest.

It is worth mentioning that our study will be re-
stricted to the region of small fluctuations (not very
close to the phase-transition point). This region nor-
mally is not the region of main interest in the afore-
mentioned papers, but the main specific features of
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the phase-transition anomalies are clearly seen al-
ready in this region, not to mention that for interpre-
tation of the experimental data this region is quite
often the most relevant one.

A considerable part of the theory of low-T struc-
tural phase transitions is very simple. Its formula-
tion uses elementary formulas of quantum and sta-
tistical mechanics, and its development involves a
fairly simple mathematics. Nevertheless, this elemen-
tary theory suffices to discuss some points of general
interest such as the validity of the Landau theory,
the soft-mode concept, the role of quantum fluctu-
ations in defining the phase-transition point, the spe-
cific features of the low-T phase diagram, etc. This
constitutes the first part of the paper where, because
of pedagogical considerations, we use a very sim-
ple model. Nevertheless, even within this elementary
treatment, there arise some questions as well as not
completely justified assumptions which will be dis-
cussed in the second part of the paper.

These questions and assumptions refer to the
character of the dynamics of the order parameter
near the zero- and low-T phase transitions. This char-
acter has not been successfully explained for high-T
phase transitions: the origin of the so-called central
peak in the soft-mode spectrum is understood only
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qualitatively [6]. For zero- and low-T structural tran-
sitions this question has not been studied at all, al-
though the dynamics of the order parameter is much
more important here. Indeed, according to the classi-
cal statistical mechanics the static properties of the
system do not depend on its dynamics. This is be-
cause (Gaussian) integration over momenta simply
gives a factor in the corresponding partition func-
tion. But the situation is different when quantum
effects play a role. In this case, the partition func-
tion does not factorize because momenta and coor-
dinates, now operators, do not commute with each
other.3 Therefore, a lack of exact knowledge of the
dynamics impedes obtaining definite results for, e.g.,
such a “static” property as dependence of the phase-
transition temperature on a control parameter (e.g.,
strain or pressure) in the low-T region. Given this sit-
uation, we will discuss several possibilities without
proposing a finite conclusion about which of them
corresponds to the reality. For this discussion, we
need no model at all, and the system is considered
in this second part as a continuous medium.

2. THE SINGLE-ION MODEL

The so-called single-ion model (see, e.g.,
Ref. [7]) is very convenient when illustrating a
zero-T structural phase transition. Within this model
one assumes, first of all, that the crystal is composed
by two types of atoms, say A and B. Our aim is to
describe “active” A-atoms in the simplest way, so
we further assume that (i) the sublattice of B-atoms
can only be deformed homogeneously and (ii) the
interaction between A atoms is a nearest-neighbor
interaction mediated by springs. Additionally, there
is an interaction between A and B atoms which is
responsible for the relative position of the corre-
sponding sublattices. Restricting ourselves to the
orthorhombic case, let us choose the unit cell with
B-atoms placed at the apices of the correspond-
ing cell (see Fig. 1). Thus, the potential acting on
A-atoms due to the B ones has to be symmetric
with respect to the center of this cell. This is so if
this potential has (i) a minimum in the center of
the unit cell or (ii) two symmetric out-of-center
minima. In the following we shall assume that (i)

3This difference is even more apparent within the path integral
formalism: the domain of integration over the (imaginary) time
variable turns out to be infinitesimal in the classical case (high-
Ts), while it is not in the quantum one (low-Ts).

Fig. 1. The model: unit cell, effective potential acting on A-atoms
due to B ones, and an illustration of the interaction between
A-atoms.

is the case when the crystal is strongly compressed
and then, along the z-axis, it turns into case (ii) with
diminishing the compression (see Fig. 1). This makes
possible a change in the mean position of A-atoms,
i.e. a phase transition, in a fairly simple way.

The potential energy of the system then can be
written as

U = U0 +
∑

R

(
a
2

u2
R + b

4
u4

R

)
+

∑

R,R′

′ c
2

(uR − uR′)2,

(1)
where uR represents the displacement of the A-atom
along the z-axis in the Rth unit cell. The first sum in
this expression represents the effective potential act-
ing on A-atoms due to B ones. Let us characterize
the compression of the system by the magnitude w =
(V0 − V)/V0, where V is the volume of the system and
V0 is this volume at zero pressure for the (nonequilib-
rium) configuration in which all A-atoms are main-
tained in the center of the corresponding unit cells
(i.e., uR = 0). Thus, by taking a = α(w − w0), with
α > 0, and b as a positive constant; w0 gives the strain
at which the form of this potential change from one-
well to two-well. (The usually small difference be-
tween V and V0(|w |, |w0| � 1) turns out to be rele-
vant for the change in the sign of the coefficient a
only, so we shall not distinguish between V and V0

anywhere but here.) The second sum in Eq. (1) is
the interaction potential between A-atoms, where c
is stiffness coefficient of springs linking pairs of A-
atoms (see Fig. 1) and summation is carried out over
nearest-neighbors only.

2.1. Static Properties: A Classical Zero-T Transition

Let us suppose at this point that the mass of
A-atoms is infinite, so they can be treated as classical
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particles. Consequently, the configuration of the
system will be the one which simply minimizes the
potential energy. The static properties of the system
will be in accordance with this configuration, so let
us proceed to determine it.

It is clear that the minimum of the potential en-
ergy corresponds to the configuration in which the
springs linking A-atoms do not experience any de-
formation. So all the atoms will be located in the
same minimum of the effective potential created by
B-atoms: uR = u0. Equation (1) then reduces to

U = U0 + N
(

a
2

u2
0 + b

4
u4

0

)
, (2)

where N is the number unit cells. Minimizing this po-
tential, we find the equilibrium value of u0:

u2
0,eq =

{
0 (w > w0),
− a

b (w < w0),
(3)

and the corresponding value of the potential energy:

Ueq =
{

U0 (w > w0),
U0 − N a2

4b (w < w0).
(4)

In accordance with these formulas, the change in the
form of the effective potential acting on A-atoms and
the phase transition take place simultaneously at w0.

2.1.1. Phase-Transition Anomalies

As we have mentioned, the sublattice of
B-atoms, and therefore the system as a whole, can
be compressed homogeneously by applying pressure.
Let us see how the corresponding stiffness of the sys-
tem changes as a result of the phase transition. To
this end, we present the potential energy of the sys-
tem with A-atoms at the center of the corresponding
unit cell as

U0 � U◦
0 + U′

0

2
w 2 + · · · (5)

(the term linear in w is absent by virtue of the defini-
tion of w), and further take into account the energy of
the mechanism applying the pressure: −P(V0 − V) =
−PV0w . Minimizing the total energy with respect to
w we find this pressure:

P =
{

ζ0w (w > w0),
ζ0w − nα2

2b(w − w0) (w < w0),
(6)

Fig. 2.

where ζ0 = U′
0/V and n = N/V. As a result, the stiff-

ness is

ζ= dP
dw

=
{

ζ0 (w > w0),
ζ0 − nα2

2b (w < w0).
(7)

Its behavior is illustrated in Fig. 2, which is just
the standard behavior for an anomaly described
within the Landau theory of second-order phase
transitions.

2.1.2. Exactness of the Landau Theory for the Model

It is worth noticing that we have no fluctuations
within this model, neither thermal (as long as T = 0),
nor quantum (as long as the masses are infinite). This
makes Landau theory [7–9] to be an exact theory
here. It is frequently said that the Landau theory is
a mean-field approximation, but this example shows
that this statement is highly inappropriate.

The possibility of having a phase transition with
no fluctuations questions another frequent saying:
“zero-T phase transitions are due to quantum fluc-
tuations.” Why? We had no fluctuations but we had
a transition. Equally unjustified is to say that high-T
phase transitions are due to thermal fluctuations.
Thermal fluctuations give rise to some contribution,
of course, but as a rule they are not the unique
reason of the transition. The origin these sayings
may be in the fact that phase transitions are fre-
quently illustrated using the Ising model. For this
model, it is true that the transition is due to the
thermal fluctuations only. But while the Ising model
played an important role in the theory of phase tran-
sitions, it is very specific, reflecting (as any model) no
more than an aspect of much a more many-faceted
reality.
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2.2. Dynamics

Let us now consider that the masses of A-atoms
are finite, although very large; so that the motion of
these atoms is possible, but the corresponding dy-
namics can still be considered as classical. Let us
study some specific features of such a dynamics. To
do so, it is convenient to introduce the new variables

uk = 1
N

∑

R

uRe−ik·R (8)

having the meaning of the Fourier components of the
displacement field:

uR =
∑

k

ukeik·R. (9)

In terms of these variables the potential energy
Eq. (1) has the form

U = U0 + N
∑

k

a(k)
2

|uk|2

+N
b
4

∑

k,k′,k′′
ukuk′uk′′u−k−k′−k′′ , (10)

where a(k) = a + 4c(sin2 kxl
2 + sin2 kyl

2 + sin2 kzl
2 ), with

l being the cell parameter (here it has been taken
into account that u−k = u∗

k). By separating the zero
Fourier component of the displacement field: u0 =
N−1 ∑

R uR, which evidently has the meaning of the
mean value of the displacement field, the above ex-
pression for the potential energy can be rewritten as

U = U0 + N
(

a
2

u2
0 + b

4
u4

0

)
+ N

∑

k�=0

a(k, u0)
2

|uk|2

+ Nbu0

∑

k,k′ �=0

ukuk′u−k−k′

+ N
b
4

∑

k,k′,k′′ �=0

ukuk′uk′′u−k−k′−k′′ . (11)

where a(k, u0) = a(k) + 3bu2
0. Below we shall con-

sider the case of small-amplitude oscillations such
that the contribution of the last two sums in this ex-
pression can be neglected. It is worth noticing that
this does not mean to neglect all the anharmonicity of
the system as long as the coefficient b is still present
in the remaining terms:

U � U0 + N
(

a
2

u2
0 + b

4
u4

0

)
+ N

∑

k�=0

a(k, u0)
2

|uk|2.

(12)

Fig. 3.

In the simplest case, the equation of motion for
the Fourier components of the displacement field can
be written as

mük + a(k, u0)uk = 0, (13)

where m is the mass of the A-atoms. We then have
an optical branch with the dispersion law ω2

c(k, u0) =
a(k, u0)/m (see Fig. 3). For small wavevectors:

ω2
c(k, u0) = (

a + 3bu2
0 + c̃k2)/m, (14)

where c̃ = cl2. Substituting here the equilibrium
value of u0, Eq. (3), we obtain the normal frequencies
of the system as a function of the control parameter
w . For k = 0 that is

ω2
c(0, u0,eq) =

{
α|w−w0|

m (w > w0),
2α|w−w0|

m (w < w0).
(15)

This behavior is illustrated in Fig. 3. It is worth notic-
ing that, at w = w0, this optic branch has the same
dispersion law as the acoustic one: ω ∝ k. As a result
of this behavior, first noticed by Ginzburg [10], this
k = 0 mode is usually termed as the soft mode asso-
ciated with the transition.

2.3. Zero-T Transition: Quantum Effects

Let us now consider that the masses of A-atoms
are “normal” (not specially large). In this case, if we
consider A-atoms as immobile atoms when studying
the thermodynamic properties of the system we are
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wrong. Even at T = 0 these atoms are moving ex-
hibiting what is called quantum fluctuations, and we
have to take into account this quantum effect.

In a first step, the system can be considered as a
set of harmonic oscillators (see Eq. (13)). For a fixed
value of u0, the ground-state energy of the system
then can be written as

E = U0 + N
(

a
2

u2
0 + b

4
u4

0

)
+

∑

k

hωc(k, u0)
2

(16)

(recall that T = 0). As a result of the possible dis-
placements of A-atoms along the z-axis, here we have
the classical (macroscopic) contribution considered
in previous section plus a quantum term accounting
for the ground-state energy of the corresponding os-
cillators with normal frequencies ωc(k, u0). In further
calculations, it is convenient to take the continuous-
medium limit of our model (i.e., to replace summa-
tion by integration

∑
k → V

∫ dk

(2π)3 ):

E = U0 + N
(

a
2

u2
0 + b

4
u4

0

)
+ V

∫
dk

(2π)3

hωc(k, u0)
2

.

(17)

2.3.1. The Phase-Transition Point

Because of the dependence on u0 of the quan-
tum term (∝ h) in Eq. (17), it can be said that there
effectively is a quantum renormalization of the func-
tion E(u0). By expanding the last term in Eq. (17)
in power series of u0 we can obtain, for example,
the quantum correction to the coefficient a. The re-
sulting coefficient, a∗, is of particular interest to us:
when a∗ = 0 the system losses its stability with re-
spect to nonvanishing values of u0, what just defines
the phase-transition point. Taking into account that

∂ωc(k, u0)
∂u0

∣∣∣∣
u0=0

= 0, (18a)

∂2ωc(k, u0)

∂u2
0

∣∣∣∣
u0=0

= 3b
mωc(k, 0)

, (18b)

we find that

a∗ = a + 3hbv
2m

∫
dk

(2π)3

1
ωc(k, 0)

, (19)

where v = V/N = l3 is the volume of the unit cell.
When trying to determine the phase- transition point
one realizes that this formula is, however, somewhat
contradictory. The coefficient a has to be negative in
order to further obtain a∗ = 0. But in this case, in ac-

cordance with Eq. (14), there is a region of wavevec-
tors for which ω2

c < 0.
This difficulty can be circumvented if this re-

gion is much smaller than the whole Brillouin zone.
When this possibility takes place the system can be
labeled as displacive and, when calculating the inte-
gral in Eq. (19), one can put a = 0 quite safely. As
a result, one finds that the phase-transition strain is
given by wc = w0 + δw , where δw is the contribution
due to quantum effects (zero-point quantum fluctua-
tions) which can be estimated as

δw � − 3hbv
(2π)2αm1/2

∫ 2π/l

0

k2dk√
a + c̃k2

� − 3hb
2α

√
mc

.

(20)

Alternatively, by realizing that the frequency of the
soft mode should vanish at the “experimental” value
of phase-transition strain wc, one could replace a →
a∗ in the integral in Eq. (19). This is equivalent to
take into account, in an effective way, higher order
corrections in Eq. (19) (see below).

Although the problem seems to be overcame,
it is instructive to discuss this “overcoming” in more
detail. What we have done is to “correct” the dynam-
ical moduli of the system in a meaningful way. This
is quite similar to what is done when calculating, e.g.,
the phase-transition temperature of a classical dis-
placive system: here they are the static moduli what
are corrected in a proper way. By realizing that our
system is in fact an anharmonic system, as indicated
by the last two sums in Eq. (11), it can be expected
that going beyond the approximation of decoupled
oscillators such a correction (renormalization) will
be obtained. The possibility of using a perturbation
theory to account for this anharmonicity is therefore
quite attractive, and valuable irrespective of the
character, classical or quantum, of the problem in
question. However, the quantum case is somewhat
more complex than the classic one as long as dy-
namics plays a key role. One can realize that we
did two things in fact: (i) assumed that dynamics is
still well described in the same terms (i.e., within a
soft-mode scenario) and then (ii) corrected the cor-
responding dynamical moduli. The former has not to
be necessarily true in a real case. Indeed, one of the
well-known shortcomings of the theory of high-T
structural phase transitions is that the soft-mode
behavior has never been observed experimentally
to a full extent: the “soft mode”, at best, diminishes
its frequency considerably; but this frequency never
goes to zero at the phase-transition point. At the
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same time, close to the phase-transition point there
appears the so-called “central peak” in the order
parameter fluctuation spectrum, and the increase
of the order parameter fluctuations turns out to be
comprised within this peak. Such a peak is a natural
feature of the so-called order–disorder systems, for
which the order-parameter dynamics is relaxational
instead of phonon-like as we have considered so far.
Though there is no consistent analytical theory of the
central peak, its appearance is not surprising at all
[6]. Any system with a phase transition is inherently
anharmonic. So the phonon-like (“soft mode”)
picture is not the full picture; there is another part,
essentially an anharmonic one, which reveals itself in
the central peak. Similar effects are quite possible at
low Ts: the presentation of the motion as a set of nor-
mal vibrations, even followed by taking into account
the anharmonism within a perturbation theory, may
fail to describe accurately the dynamics of the system
close to the corresponding phase-transition point.
Consequently, one can do nothing but assume Eq.
(19) with caution and hope that it is qualitatively
correct.

The importance of the quantum corrections to
phase-transition strain can be estimated as follows.
The very possibility of observing the transition im-
plies that |w0| is much less than the atomic value of
this magnitude |wat|∼1. The other constants in the
model, however, can have their “atomic” values. In-
troducing the atomic (binding) energy εat∼h2/(mel2),
where me is the electron mass and l∼1 Å the atomic
distance, we then have

α∼ εat

l2wat
, b∼ εat

l4
, c ∼ εat

l2
. (21)

Thus, we find that
∣∣∣∣
∂w
w0

∣∣∣∣∼
(me

m

)1/2
∣∣∣∣
wat

w0

∣∣∣∣ . (22)

As long as me � m, but |wat| � |w0|, here we see that
the correction to the classical phase-transition strain
can be quite important: it may give rise to a magni-
tude wc comparable, or even greater, than w0.

2.3.2. Order–Disorder (Spin-Like) Limit

We have discussed the displacive limit but what
happens if the value of |a| at the phase-transition
point is so large that ω2

c < 0 in most of the Brillouin
zone? In this case, one simply has to realize that the
starting point was not chosen appropriately. Look-
ing back, we can see that this case corresponds to

an effective potential acting on A-atoms due to B
ones with two profound wells even in the symmetric
phase. Under these circumstances, instead of char-
acterizing the motion of A-atoms by their displace-
ment from the center of the corresponding unit cell
(what uR really means), it makes more sense to as-
sume, first of all, the atoms to be confined inside one
of the two wells and then take into account the pos-
sibility of delocallization by, e.g., quantum tunneling.
This can be done by associating the two initial posi-
tions of A-atoms with the two possible orientations
of (pseudo-)spins 1/2 and accounting for the pres-
ence of a transversal field in order to reproduce the
tunneling. Thus our model becomes a spin model ex-
hibiting a zero-T phase transition (Refs. [2, 4]). The
corresponding excitations (spin waves) are similar to
the optical vibrations considered above in the sense
that there is a “soft spin-wave” whose frequency goes
to zero at the phase-transition point. In this sense,
when it comes to zero-T transitions, displacive and
order–disorder limiting cases are not so different one
another.

2.3.3. Phase-Transition Anomalies

Let us now calculate the quantum contribution
to the anomaly in the stiffness of the system within
the displacive scenario. The main purpose of such
a calculation is to estimate the region in which the
Landau theory is applicable, so it suffices to consider
the symmetric phase (u0 = 0). From Eqs. (16) and
(14), we find that

ζ = 1
V

∂2E
∂w 2

= ζ0 − hα2

8m2

∫
dk

(2π)3

1
ω3

c(k, 0)

� ζ0 − hnα2

32π2m1/2c3/2
ln

(
4π2c

α(w − w0)

)
, (23)

where ζ0 is in accordance with Eq. (7). Let us analyze
this result in some detail.

At first sight, it seems that the stiffness of the
system changes its sign and diverges at w = w0. How-
ever, as long as we are considering the lowest or-
der correction only, we simply can say that it di-
minishes close to w0. In any case, why close to w0?
An anomaly at the phase-transition point would be
not surprising but, in accordance with Eq. (19), the
phase-transition point is not w0. What happens? The
answer is that here we have the same kind of in-
consistency that we have found before (compare the
integral in Eqs. (19) and (23)). So the replacement



On Low-Temperature Structural Phase Transitions 423

of w0 by the actual value associated with the phase-
transition strain, which can be extracted from the ex-
periments, solves it.

An estimate of the region of applicability of the
Landau theory in our case can be made by demand-
ing that the (quantum) contribution to the stiffness
of the system is much smaller than the discontinuity
obtained within the Landau theory itself. That is

hnα2

32π2m1/2c3/2

∣∣∣∣ln
(

4π2c
α(w − wc)

)∣∣∣∣ � n
α2

2b
(24)

(see Eq. (23)). In accordance with previous estimates
of the coefficients appearing in this expression (see
Eq. (21)), this gives

∣∣∣∣ln
(

w − wc

wat

)∣∣∣∣ � 102
(

m
me

)1/2

∼104. (25)

As we see, it is hardly possible to abandon this region
in real experiments.

It is worth mentioning that the behavior of the
stiffness of our model in the scaling region has been
known since long ago [11]. Roughly speaking, it is
such that one has to replace in by ln1/3 in Eq. (23).
As we see, both the first-order approximation and the
theory for the scaling region provide qualitatively the
same results (see Fig. 4). However, as a rule, the first-
order approximation gives rise to an overestimate of
the relevant magnitudes in the very vicinity of the
phase-transition point: in our case, by extrapolating
the increase of the stiffness obtained within the first-
order approximation to the scaling region one over-
estimates such an increase.

2.3.4. Thermal Effects

Thermal effects can be revealed by following the
same considerations as above. At finite temperature,

Fig. 4.

the free energy of the system can be written as

F = F0 + N
(

a
2

u2
0 + b

4
u4

0

)
+ V

∫
dk

(2π)3

hωc(k, u0)
2

+TV
∫

dk
(2π)3

ln{1 − exp[−hωc(k, u0)/T]}. (26)

(Notice that this expression is nothing but the free
energy of a set of harmonic oscillators, see, e.g., Ref.
[8].) Therefore, the coefficient at the term quadratic
in u0 is

a∗ = a + 3hbv
2m

∫
dk

(2π)3

1
ωc(k, 0)

+3hbv
m

∫
dk

(2π)3

n[ωc(k, 0)]
ωc(k, 0)

, (27)

where n(ω) = [exp(hω/T) − 1]−1 is the Bose–
Einstein distribution function. Here, we have the
quantum contribution computed in previous section
(see Eq. (19)) plus a thermal one (the latter integral).
Similar to what we have done when discussing the
quantum contribution to wc, it is reasonable to
replace a → a∗ in the expression of ωc entering in
Eq. (19).

Let us discuss the phase diagram. The border be-
tween the symmetric and non-symmetric phases in
the (T,w)-plane is defined by the condition a∗ = 0.
This gives the line

w − wc = −α−1f (Tc), (28)

in the (T,w)-plane, where f (Tc) is the last integral
in Eq. (27) evaluated at a∗ = 0. At low temperatures
[hω(0, 0) � T � hω(kmax, 0)], this integral can be es-
timated as

∫
dk

(2π)3

n[ωc(k, 0)]
ωc(k, 0)

= 1
2π2

∫
n[ωc(k, 0)]
ωc(k, 0)

k2dk

� 1
2π2

∫ kmax(T)

0

T
hω2

c(k, 0)
k2dk

= m3/2

2π2h2c3/2v
T2. (29)

taking into account that the Bose–Einstein distribu-
tion function decreases very strongly within the inte-
gration interval (it vanishes for k ≥ kmax(T) = m1/2

h̃c1/2 T).
This gives

w − wc ∝ T2
c . (30)

At high temperatures [hωc(k, 0) � T], the
Bose–Einstein distribution can safely be replaced by
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its classical limit:
∫

dk
(2π)3

n[ωc(k, 0)]
ωc(k, 0)

�
∫

k2dk
2π2

T
hω2

c(k, 0)
� m

πhcv
T.

(31)
We then have

w − wc ∝ Tc. (32)

3. CONTINUOUS MEDIUM APPROACH

At this point, it is worth making a comparison
between origin of the quantum and thermal contri-
butions in a∗ obtained previously (see Eqs. (19) and
(27)). While the quantum contribution comes from
the ground-state energy of all the optical phonons,
the thermal contribution is obtained from the opti-
cal phonons with small wavevectors only. In conse-
quence, the actual value of phase-transition strain
at zero temperature (wc) is sensitive to the micro-
scopic details of the system, whereas the function
Tc(w) defining the phase-transition temperature as a
function of strain is not. This can be taken as a justi-
fication to use a continuous medium approach when
studying thermal dependencies. Just in this sense one
speaks about an universal low-T behavior of the sys-
tems, exemplified by the temperature dependence
of specific heat of solids (the Debye law): it comes
from the contribution of small-wavevector acoustic
phonons and, therefore, is characterized by macro-
scopic quantities such as the velocity of sound.

However, in our case, this universality is not so
evident. It can be expected when the soft-mode sce-
nario takes place, as we were able to argue for a
classical zero-T transition. But as soon as we make
the model more realistic, taking into account real
values of the ion masses and, therefore, the quan-
tum effects, as well as considering other degrees of
freedom, in particular, acoustic modes, the dynam-
ics of the system becomes far more complicated.
This has not been studied to a full extent, for which
there is a reasonable explanation: difficulties similar
to those found for the high-T order-parameter dy-
namics are indeed expected. As we have mentioned,
the soft-mode scenario is not completely applica-
ble to high-T phase transitions: in both real and nu-
merical experiments the central-peak phenomenon
appears time and again, and this lacks a theoretical
explanation beyond “hand-waving” arguments [6].
The situation for zero- and low-T phase transitions
is unknown, but one may suspect that it is similar. In
consequence it is quite reasonable to consider, within

the continuous medium approach, both hypothetical
cases: that of the soft-mode (phonon-like dynamics)
scenario and the central-peak-like (relaxational dy-
namics) one. As we shall see, the aforementioned
universality is lost in the second case for which the
continuous medium approach becomes no more than
a model.

3.1. Phonon-Like Dynamics

Our arguments about the universality were re-
ferred just for the phonon-like case. In this case, the
theory can be made somewhat more realistic, even
model-independent, than the one presented above
where only one (“active”) optical branch is taken
into account. It is straightforward, in particular, to
take into account the acoustic branches (e.g., to ac-
count for the motion of B-atoms as well). Indeed one
may expect that these acoustic phonons give rise to a
significant contribution to a∗: they are low-frequency
excitations of the system. Consider the free energy

F = F̃0 + N
(

a∗(T)
2

u2
0 + b

4
u4

0

)

+ 3V
∫

dk
(2π)3

hωac(k, u0)
2

+ 3TV
∫

dk
(2π)3

ln{1 − exp[−hωac(k, u0)/T]} (33)

where a∗(T) is given by Eq. (27). This is nothing
but Eq. (26) where the contribution of the acoustic
phonons has been added explicitly. This contribution
depends on u0 because of the corresponding depen-
dence of the velocity of sound:

ωac(k, u0) = c(u0)k, (34)

which can be taken as c(u0) = c0(1 + α′
2 u2

0). (This ve-
locity has to be understood as an averaged velocity of
sound in the same sense as in Ref. [8].) Thus, the new
coefficient of the free energy at the quadratic term in
u0 can be written as

a∗∗(t) = a∗(T)

+3hα′v
2π2

∫ {
1
2

+ n[ωac(k, 0)]
}

ωac(k, 0)k2dk. (35)

As we see in this expression, we have a new contribu-
tion to the phase-transition strain wc which is not sur-
prising (the part of the integral which does not vanish
at T = 0). But we also have a thermal one which can
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be estimated as

3hα′v
2π2

∫
n[ωac(k, 0)]ωac(k, 0)k2dk � hc0α

′v
2π2

(
T

hc0

)4

.

(36)
Having in mind that the thermal activation of the op-
tical phonons obtained above is exponentially sup-
pressed with moving away the phase-transition point
(see Eq. (27)), one realizes that this thermal con-
tribution due to acoustic phonons may be the most
important one in a significant region of the (T,w)-
plane. However, this is not the case close enough to
the phase-transition point where a∗(T) − a∗(0) ∝ T2.
Consequently, the form of the phase diagram does
not change from the one expounded above.

These changes take place if, for instance, there
exist long-range interactions in the system. In this
case, complicated dispersion relations may arise
such that the dimensionality of the integrals in
Eq. (27) effectively increase. In the case of uniax-
ial ferroelectrics, for instance, dipolar interactions
lead to ω2

c(k, 0) = (a + c̃k2 + 4π cos2 θ)/m for small
wavevectors. This further gives a∗(T) − a∗(0) ∝ T3

(see, e.g., Refs. [3, 12]). The linear coupling between
the order parameter and one of the component of the
strain tensor, i.e., the piezoelectric effect in the case
of ferroelectrics, gives rise a peculiar dependence
a∗(T) − a∗(0) ∝ T5/2 [13]. These long-range interac-
tions, however, do not modify the high-T behavior.

3.2. Dissipative Dynamics

Let us now consider that there is a central peak
in the order-parameter fluctuation spectrum, at least
close to the phase-transition point. Such an assump-
tion is far from being trivial: it implies that there is an
essential frequency dispersion in the order parame-
ter response function and, therefore, a dissipative dy-
namics of the order parameter even at T = 0. In a
number of the systems, e.g., for perfect crystals with-
out phase transitions, this is certainly not the case.
But the situation with such an inherently anharmonic
system as the one we are considering here (recall that
a < 0 in our case) is unclear. What seems to be clear,
however, is that for crystals with some defects the dis-
sipative dynamics of the type we are supposing here
takes place even at T = 0 [14]. Therefore, even if our
consideration would prove to be irrelevant for pure
systems, it might still be relevant for systems with
some defects. A dissipative dynamics for a set of vari-
ables means that these variables are not coordinates
of a closed system but there is a “reservoir” where

the system in question transfers its energy to. In our
case, the long-wave acoustic phonons could play the
role of such a reservoir. When calculating the contri-
bution of the set of dissipative variables one should,
of course, not forget the contribution of the reser-
voir. Only in the case when the latter contribution is
irrelevant it makes sense to consider a system of dis-
sipative variables as the main contributor (see, e.g.,
Ref. [15]). Let us mention that even apart from pos-
sibility of the central peak, an account of a phonon
damping at T = 0 due to e.g. defects is of some in-
terest for zero- and low-T transitions. We shall be-
gin with this case by postulating the equation of
motion

mük + γ̃u̇k + a(k, u0)uk = 0, (37)

where the viscosity coefficient γ̃ accounts for the dis-
sipation.

3.2.1. Thermal Effects

Making use of some results obtained by previous
authors (see, e.g., Ref. [15]), we can study the case in
which the motion of the “active”-atoms is governed
by Eq. (37). In this case, the free energy can be writ-
ten as [15]

F = F̃0 + N
(

a
2

u2
0 + b

4
u4

0

)
+ TV

∫
dk

(2π)3

×
[

ln
(

2π[λ1(k, u0)λ2(k, u0)]1/2

ν

)

− ln �

(
1 + λ1(k, u0)

ν

)
− ln �

(
1 + λ2(k, u0)

ν

)]
,

(38)

where ν = 2πT/h and {λi(k, u0)} are the roots of the
equation λ2(k, u0) − γλ(k, u0) + ω2

c(k, u0) = 0, satis-
fying the relations

λ1(k, u0) + λ2(k, u0) = γ, (39a)

λ1(k, u0)λ2(k, u0) = ω2
c(k, u0). (39b)

It is worth mentioning that the first term F̃0 in
Eq. (38) now includes the contribution due to the
reservoir. In principle, this contribution could exhibit
a nontrivial behavior close to the transition point as
a result of the coupling between the active atoms
(which clearly “feel” the transition) and the degrees
of freedom in the reservoir (which also “feel” the
transition because of this coupling). Nevertheless,
if these degrees of freedom forming the reservoir
are low-frequency acoustic phonons, which would be
quite natural, it can be shown that their contribution
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(i) is not substantially modified because of damping
[14] and (ii) is not the most important one close to
the (low-T) phase-transition point as we have seen in
Section 3.1 [13].

The above formulas allow us to compute the rel-
evant magnitudes close to the phase transition by fol-
lowing the same procedure as before (see Ref. [13]).
The coefficient at the quadratic term in u0 in the free
energy, for instance, is found to be

a∗(T) = a + 3bv
mkBT

∫
dk

(2π)3

(
1

2ω2
c(k, 0)

+ψ [1 + λ1(k, 0)/ν] − ψ [1 + λ2(k, 0)/ν]
ν[λ1(k, 0) − λ2(k, 0)]

)
.

(40)

Close to the phase-transition point, this further gives

a∗(T) − a∗(0) ∝ T2, (41)

in the relaxation limit (m → 0). It is worth mention-
ing that this behavior is found irrespective of long-
range forces [13], which is related to the fact that
the thermal activation of the elementary excitations
of the system is substantially modified as a result of
the damping (notice that the Bose–Einstein distribu-
tion function in Eq. (27) has been replaced by the
psi functions in Eq. (40)). In fact, the most impor-
tant conclusion here is that, as a result of damping,
the paradigm: low-T behaviors = small wavevectors,
is not longer valid. This is because all degrees of free-
dom may give a contribution to the corresponding
thermal behavior as a result of the damping (if m →
0, in Eq. (40) there is no temperature-dependent cut-
off analogous to that in Eq. (27)). In some sense, this
is similar to what happens in the case of the phase-
transition strain: one has to go beyond the continuous
media approach to calculate this strain. The situation
is new, however, in the sense that this happens even
for the thermal behavior.

4. CONCLUSIONS

The subject of low-temperature phase transi-
tions has been examined, dealing with the structural

case and focusing on the region of small fluctua-
tions. Within an oversimplified but illustrative model
we have discussed some points of general interest,
such as the validity of the Landau theory, the role
of quantum fluctuations in defining the phase-
transition point and the specific features of the low-
temperature phase diagram. We have pointed out
also that a profound study of dynamics, both experi-
mental and theoretical, is still needed to get fully jus-
tified results about the phase diagrams and anoma-
lies at structural and may be other low-temperature
phase transitions.
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