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Dynamics of spiral spin waves in magnetic nanopatches: Influence of thickness and shape
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We explore the dynamics of spiral spin waves in permalloy nanoelements with variable aspect ratio of
geometric dimensions, and their potential use as improved spin wave emitters with no or little biasing field
required. Numerical results show that above a certain thickness, propagating spiral waves can be obtained
in circular and square shaped elements in a flux closure state. VNA-FMR experiments on 20-nm (thin) and
80-nm (thick) samples confirm two type of spectra corresponding to different dispersions for thinner and thicker
elements. We show that, for the thicker films, the vortex core region acts as a source of large amplitude spiral spin
waves, which dominate over other modes. In case of the thinner elements, these modes are critically damped. For
different shapes of the patch, we show that a rich collection of confined propagating modes can also be excited,
modifying the final wave front and enriching the potential of the nanodot as a spin wave emitter. We give an
explanation for the intense spiral modes from the perspective of a balance of dipolar and exchange energies in
the sample.
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I. INTRODUCTION

Spin waves in confined structures have been a subject of
interest with the view of their potential applications in the field
of computing and data storage [1–4]. Due to a competition
between dipolar and exchange energies in such structures, a
range of relaxed states can be achieved, dependent on the
shape and the dimensions of the structures. Most of these mag-
netization states will have a preferred in-plane magnetization
with inhomogeneities arising at the boundaries or high sym-
metry points, leading to magnetization singularities such as
magnetic domain walls and vortex configurations. It has been
reported that, due to the confinement or the natural magnetic
state of the sample, inhomogeneities of the internal magnetic
field can be sources of spin waves due to a graded index in the
magnonic landscape [5,6]. A number of studies have focused
on characterizing and explaining the source of spin waves in
confined micron and submicrometer structures for different
magnetic domain configurations and saturated states [7–9].
Due to the finite size of the structures, dispersion relations of
spin waves are expected to be discrete in contrast to a contin-
uum spectra for spin waves in infinite films [10]. Spin wave
propagation along the edges and emission from edges and
local regions in the magnet have also been proved through mi-
cromagnetic simulations and direct imaging [11–13]. More-
over, in circular disks, depending on the orientation of the
oscillating field, i.e., transverse or normal to the plane, a spiral
or circular standing pattern can be formed, respectively.

In some applications based on confined magnetic struc-
tures like nanodots, the existence of spin waves is usually
a nondesirable phenomena, as their frequencies lay in the

*do278@exeter.ac.uk

gigahertz (GHz) range and potentially interfere with writing
or reading operations in magnetic memories. On the other
hand, spin waves may play a central role in future communica-
tion technologies. For example, previous works have reported
conceptual ideas and realizations of several magnonic devices,
logic gates [14,15] and information processing components
such as transistors or diodes [16,17] which, in addition to an
effective control on redirection along magnetic tracks [18,19],
can lead to more complex and practical magnonic logic cir-
cuitry. Hence, discovering new ways to effectively source and
control spin wave propagation can make a significant impact
on realization of such applications.

In this paper, we focus on the problem of spin-wave
emission of thick magnetic elements with vortex singularities.
Wintz et al. [20] demonstrated recently that a vortex core
can serve as a source of spin wave emission in ferromagnetic
bilayer elements, with the ability of tuning the spin wave
frequency and propagation direction, inwards towards, or
outwards from the core. They reported large amplitude spin
wave modes with spiral wavefront. A further work by the
same team has also reported spiral spin waves in monolayered
nanodisks, which were explained as a result of hybridization
with first order standing spin waves across the thickness of the
disk [21]. The understanding of the origin of these modes is,
by itself, an interesting topic and consequently led to a number
of subsequent studies, for example by Kammerer et al. [22]
and Stoll et al. [23]. However these studies mainly focused
on stationary modes and core reversal, with the formation of
a dynamic double core or “dip.” A similar explanation was
offered by Verba et al. [24], but through a different approach:
varying thickness to compare different hybridizations in thin
and thick samples.

Our present study explores the formation of spiral spin
waves in thicker samples using both numerical simulations
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and experimental results. Starting from the principle formal-
ism of dynamics described by the Landau-Lifshitz equation
of motion we consider the different energy contributions and
their influence in thin and thick elements. We consider the dis-
persion of the supported spin wave, and study the influence of
thickness on the intensity enhancement of these spiral modes.
We also provide insight into the way that the element shape
affects the magnetization distribution by making comparisons
between a square sample and the original circular one. We
study the arising of confined modes in different types of
patches, which can lead to further enhancement of the spiral
wave and turning the magnetic patch into a more reliable and
complex spin wave emitter. We experimentally characterize
these spin wave modes using a standard VNA-FMR (vector
network analyzer - ferromagnetic resonance) setup, in con-
trast to the more complex imaging techniques such as space
resolved Kerr microscopy, used by Neudecker et al. [25]. Our
findings may lead to the development of new types of efficient
spin wave emitters for information technologies, potentially
useful as simple, tunable, and high-intensity source units in
larger magnonic circuitry.

In Sec. II, we describe our numerical model, and in Sec. III,
we show our experimental and numerical results, including
evidence illustrating the spiral character of the mode propaga-
tion and its dispersion relations (for both circular and square
geometries).

II. MATERIALS AND METHODS

In order to understand the dynamics of spiral spin waves,
a set of micromagnetic simulations using MUMAX3 software
[26] have been undertaken. The typical material parameters
of permalloy elements at room temperature were [26] sat-
uration magnetization Ms = 8 × 105 A m−1, exchange con-
stant Aex = 1.3 × 10−11 J/m, and Gilbert damping constant
α = 0.008. All simulations, as well as the experimental con-
ditions, assume room temperature parameters. Simulations
were performed using a hexaedral grid for the samples with
the following geometric parameters of the elements and the
corresponding cell sizes: Circular (square) samples have a
diameter d (side length L) of 900 nm and different thicknesses
t of 20 and 80 nm. With a fixed size cell along z (NCz) of
5 nm for the thick samples and 2 nm for the thin, the grid
is discretized in the x, y, z space into 256 × 256 × t/NCz

cells. Therefore the number of cells in z is 10 (t = 20 nm)
and 16 (t =80 nm). Cell size along x and y is 3.5 nm. Size
cell along three dimensions is always kept smaller than the
exchange length of permalloy (5.7 nm). To verify that the
cell size is not effecting the results, several simulations were
performed with a reduced dimensions keeping the size of
the elements fixed. Following the common practice [26], the
number of cells were chosen to be powers of 2 to maintain
the computational efficiency. In circular disks, we also set a
‘smooth edges’ condition with value 8. A key point for most
micromagnetic simulations is to achieve a stable magneti-
zation ground state. This was achieved by firstly setting an
artificial vortex state with polarity and chirality numbers of
(1, −1) and then running the simulation with high damping
term (α = 1) to relax the magnetization until the maximum
torque ( maxTorque parameter in MUMAX3) is at the level of

10−7 T. Numerical value oscillates around a specific value,
which indicates convergence and the effective achievement of
a magnetization ground state. A typical time to achieve this
is of the order of 100 ns. Once the ground state is obtained
the whole magnetization configuration is stored and then used
for the simulations with the dynamic activation. To achieve
an equal excitation across a desired frequency range in the
dispersion diagram, a sinc-shaped magnetic pulse has been
used [B1(t)]:

B1(t ) = A1sinc(2π fc(t − td )), (1)

where fc is the cutoff frequency, set to 30 GHz, and A1 =
10 mT is the pulse amplitude. Using this activation, each
mode is equivalently fed with an ac magnetic field of 0.3 mT
in amplitude. This field is small enough to remain in the
linear regime of activation and to avoid any static changes
in the magnetic domain structure of the samples. The delay
time td = 5 ns provides a reasonable offset to the peak of the
pulse, allowing a gradual increase of the amplitude from the
beginning of the simulation. In another scenario, for analyzing
time evolution of the magnetic signal, we apply a continuous
wave (CW) excitation with a magnetic field B2 at a specific
frequency f0:

B2(t ) = A2sin(2π f0t )), (2)

Similar to the sinc pulse, each mode is excited with a relatively
small oscillating field. Equivalently to the previous case, A2 is
chosen to be 0.3 mT to obtain a good magnetic contrast in the
time domain.

We use a sampling period of Ts = 25 ps and record up
to 1024 frames in space and time. With these parameters,
simulation time is long enough (up to 50 ns) to get a reason-
ably good Fourier resolution of 78 MHz per frequency bin.
For computational efficiency, we use a power of 2 for the
number of time samples for faster Fourier transformation in
analysis. The simulated spin wave spectra is calculated from
the absolute amplitude of all modes averaged for every cell in
the model.

In the experiment, these spectra are compared to the ab-
sorption intensity, visualized through the real part of magnetic
susceptibility (χ ′). Experimental results were obtained by
measuring a transmission spectra of a sample in a coplanar
waveguide geometry by means of a vector network analyzer
ferromagnetic resonance (VNA-FMR) setup. We use wide
frequency band VNA-FMR technique in a lower range of
frequencies, where many waveguides operate with higher
reliability. In our measurements, we used a set of samples fab-
ricated using standard EBL techniques, with different parame-
ters of shapes and dimensions. To enhance the rf response, the
elements were grouped in square lattices with the separation
equal to the size of the element, assuming no or very limited
interaction between the elements. We tested arrays of thick
(t = 80 nm) disks and squares with diameter and side lengths
ranging from 500 to 900 nm. Since the arrays of samples are
placed on top of a coplanar waveguide (CPW), the pumping
magnetic field provided by the CPW is applied parallel to the
sample plane and, in the case of square elements, parallel to
one side of the square lattice. The sample is placed on the short
path of a U-shaped CPW, and so, a perpendicular pumping
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with respect to the biasing field is applied (Hbias⊥hrf ), [27].
The experiments were carried out in the range of −70 to
70 mT, which was sufficient to cover the vortex structure
regime in the elements as well as saturation, in steps of 2 mT.
Each spectrum was reduced by subtracting a signal produced
at a highest field and then averaged over 10 measurements.
This helped to remove the larger background signal related
to the transmission line noise, and allowed us to amplify the
magnetic response which is normally much smaller than other
electromagnetic components.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we explore spiral spin waves propagating
outwards from the vortex core region. We analyze their disper-
sion characteristics for circular and square disks and provide
an explanation from the point of view of dipolar and exchange
energies and their balance.

A. Dispersion characterization

We start with the analysis of circular disks. Spin wave
spectra of circular nanodots has been studied intensively in the
past [28,29]. When applying an in-plane excitation, the lowest
state mode that can be observed is related to a gyrotropic mo-
tion of the vortex core, with the frequency of gyration highly
dependent on the aspect ratio of the dot [30]. With increase
of frequency, higher order gyrotropic modes [31,32] and a
complete set of modes related to azimuthal and radial spin
waves can be obtained [28]. The last type of spin waves are
intuitively related to the well-known Damon-Eshbach modes
in magnetized thin films, in the sense that radial k vectors are
always perpendicular to M in a vortex core configuration [33].
Depending on the thickness and more generally, on physical
dimensions, the spectra of these waves can drastically change.

In our study, we firstly proceed to obtain dispersion re-
lations for permalloy circular disks with a relatively high
aspect ratio (see Materials and Methods). To understand their
dynamic properties here we explore their dispersion relations.
Because of the circular geometry, which does not allow to
take advantage of periodic boundary conditions (PBC), we
have also built rectangular “semi-infinite” stripes, setting an
equivalence between the radius of the disk and the lateral finite
dimension (x axis) of the rectangular stripe. PBC along y axis
of the stripe structure are set, this provides a similar depen-
dence but in a much clear representation. Their magnetization
distribution along x direction is the same as in the circular
disk, whereas an infinite Bloch wall, similar to the one studied
in Ref. [5], plays an equivalent role to that of the vortex core
in disks.

Figure 1(a) shows a comparison of the simulated spin wave
spectra for the above mentioned structures: a 20-nm- and
80-nm-thick disks as well as the semi-infinite rectangles of the
same thickness. Figures 1(b) and 1(c) show their dispersion
relations (for thick and thin structures, respectively). Although
both 80-nm-thick systems show more intense modes above
6 GHz than the thin elements, there are some small discrep-
ancies between the resonance spectrum of the circular disk
and the stripe, which could be due to the differences in shape
anisotropy and the implications on the internal effective field

FIG. 1. (a) Spin wave spectra for thick and thin circular disks
(left) and semi-infinite stripes (right). The main peak has been
marked with a star. Dispersion diagrams in x direction, i.e., across
the center for thin (b) and thick (c) disks and stripes of equal length
along x (L = 900 nm) are shown. Color scale shows the module of
each mode. The change in width of the vortex core can be easily
spotted in the insets. Red dash line shows the analytical equation for
a Damon-Eshbach mode from Ref. [34] and white dashed line the
analytical model from Ref. [35] assuming unpinned moments.

and the local FMR [12]. However, the difference in frequency
spacing between relative larger peaks when the size is reduced
(from d = 900 nm to 600 nm) remains the same (� f =
0.77 GHz) for the disk and our stripe model, which suggests
that this mode is of the same nature in both shapes and equally
influenced by the cavity length of the shape.

It is also worth to note that the increase of thickness affects
the magnetic inhomogeneity at the center of the disk or the
stripe, widening the vortex core and turning the Neel wall into
a Bloch wall, respectively [see insets in Figs. 1(b) and 1(c)],
being this the most prominent change in the magnetic con-
figuration. All this suggests a connection with the enhanced
mode above 6 GHz, which is not excited from the edges but
rather, from the central region of the shape, i.e., from the
vicinity of the vortex core (see Fig. 2) and, equivalently, from
the vicinity of the Bloch wall in the semi-infinite stripe. The
latter is supported by results from Ref. [5], suggesting that
the inhomogeneity at the core region can be treated as an
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FIG. 2. Snapshots of the dynamic out-of-plane component of
magnetization for thin circular disks, d = 900 nm, applying a CW
in-plane excitation of 12.7 GHz (a) and for thick circular disks
applying 8.7 (b), 7 (c), and 10 GHz (d) to the whole shape. While
in thin disks the excited wave propagates inwards (a), on the thick
disk the spin wave propagates outwards with more intensity (b).

equivalent source of spin wave. For thicker disks, this implies
that there is a multimode regime above a certain frequency,
where the spin waves are being excited from both the edge
and from the core, like it was found in Ref. [12]. However,
in our case, the waves originating from the core significantly
prevail in amplitude. The obtained dispersion relations, help
to understand the spectra in more detail, see Fig. 1. For thin
(20-nm) disks [Fig. 1(b)], we can clearly see that the only
propagating mode excited at frequencies above 5 GHz is
originating from the edges [see Fig. 2(a)], in accordance with
the analytical model for spin waves in a Damon-Eshbach con-
figuration from [34], which takes into account the finiteness
of the element. This is also consistent with previous results
where the edges act as spin wave emitters [12]. In thicker
disks [Fig. 1(c)], the lower branch mode can be analytically
described assuming unpinned magnetic moments conditions,
i.e., free surface boundary conditions for first higher-order
modes [21,35] (see Fig. 1).

Here we reproduce some results for thin circular disks
for the comparison with our thicker samples. As previously
reported for this case, an in-plane CW excitation gives rise
to an inwards propagating wave which generates a spiraling
wavefront. It is worth to note that this case is realized for the
excitation in-plane, in comparison to radial waves which can
be also produced with out-of-plane pumping [12].

Looking at the thicker 80-nm disks, we can clearly see
the following factors in Fig. 2(b). If we excite a wave with
an in-plane CW magnetic signal at the resonance condition
of 8.7 GHz, we can observe the formation of a spiral pat-
tern which is clearly emanating from the vortex core region
of the disk. The spin wave’s wavefront is attenuated along
the direction of excitation y, that we believe is due to the
destructive interference with the weaker oscillations coming
from the edges, which are also excited along that direction.
As expected from the dispersion relations, we get similar
spiral patterns at different CW frequencies that fall into the
excitation range of the lower branch [see Figs. 2(c) and 2(d)].
Also, the wavelength of these waves can be easily tuned
changing the frequency of the driving field, similarly as it was
reported in Ref. [20]. Further simulations (not shown here)
show that if the pumping field is applied out of plane, the
outward propagating spiral wave turns into a circular wave. At
higher frequencies, waves from the core become weaker and
spin waves from the edges are now more efficiently excited.
Another important feature of the spiral wave is that it is still
excited at the resonance frequency even if the vortex core is
shifted by applying a biasing external field, where the limit is
saturation field.

Similar investigation was carried out in 80-nm-thick
permalloy square elements. This shape shows a richer collec-
tion of modes due to the formation of domain walls, which
provide additional topological confinement. In particular, they
can serve as the channels for spin wave propagation, when
the sample’s magnetization configuration is in its ground state
of closed leaf, Landau pattern [9,37]. Due to the Landau
pattern, separation between the triangular domains in the
square dot will give rise to 90◦ domain walls. From this
point, every mention in the paper to “domain walls” in the
studied samples or as spin wave channels will be implicitly
referring to this type of domain wall, unless it is indicated
otherwise (as in “180◦ Bloch wall”). To visualize the spin
wave dynamics here we demonstrate the results of excitation
only of the central core region of the square in a single
Landau ground state. This helps to avoid other dynamic
effects such as domain wall oscillations and radiation of spin
waves from the edges. However, it can be shown that such
limitation does not undermine the effect and, even when the
whole element is exposed to uniform magnetic field, the same
processes can be easily observed. Figure 3 shows examples of
magnetization configuration at different times after exposing
the square elements to a continuous periodic field hac. It can
be clearly seen that as the time progresses the phase of the
oscillation becomes asymmetrically distorted forming a spiral
wavefront. Compared to the circular elements however, where
the formed spiral is radially uniform, in squares the shape of
the front is significantly distorted. As well as the geometric
constraints of the shape, the wave propagation is affected
by the presence of the domain walls. In both thin and thick
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FIG. 3. Snapshots of the dynamic out-of-plane component of
magnetization for thick circular disks (d = 900 nm) (a), rounded
squared disks (b) and squared disks (c) applying a 8.7-GHz CW
excitation at the core region (d = 100 nm). Black dashed contours
for each shape are plotted and curvature of the chamfered corner is
equal to one quarter of the side length.

elements, the walls primarily lead to distortion in local demag-
netizing field and thus modifying the dispersion properties.
For thicker elements, this is a more profound effect, because
above a certain limit (approximately 50 nm) the transverse
profile of the wall changes significantly, leading to a Bloch
type structures with a nonzero out-of plane component. A
more (significant/interesting) effect however comes from the
dynamics of the walls themselves. Even though the walls
are absolutely stationary at this frequency range, due to their
confined nature they can host a range of transverse oscillations
for the perpendicular component of magnetization alongside
the wall. This can lead to a formation of propagating spin
wave modes along the domain walls, or so-called Winter’s
modes [38]. Our simulations show, that the intensity of these
modes can be significantly higher than any other dynamic
modes, and thus significantly affect the formation of the spiral
waves. Previously it was shown that these modes can arise
from the topological inhomogeneities in the sample (e.g.,
corners or edges) [39]. In our case, this is very well seen
that they originate directly from the core region and propagate
with a shorter wavelength, almost twice smaller [see Fig. 3(c)]

FIG. 4. Dispersion relation from of the mode traveling along the
domain wall in the square (red dots). Numerical results from the
dispersion along the diagonal of the square (red dots) agree nicely
with the theoretical equation of a Winter’s magnon along a 180◦

Bloch wall (green solid line) in the exchange regime [36] at large
k and show a mixing of two behaviors with the dispersion along a
Neel wall at lower k and bloch at larger k. Insets show components
of static magnetization demonstrating the “mixed” Bloch and Neel
wall behavior along the diagonal of the square.

than the spiral spin waves radiated into the triangular domains
of the Landau pattern. The confined spin waves—Winter’s
magnons—also show opposite phase propagation along the
different sides across the core. This later factor helps
to couple the spiral waves in the triangular domains together
with the magnons in the domain walls. However, the differ-
ence in the wave numbers leads to a different propagation
velocity and consequently the distortion in the circular spiral
wavefront that become reminiscent of the geometric shape
structure. It can be shown that this works not only for squares,
but for shapes of any number of corners, as long as the corners
are sharp enough to produce a reasonably confined domain
wall. Figures 3(b) and 3(c) show how the effect is changing
when reducing the angle of the corner. It is interesting to note,
that one diagonal seems to be better excited than the other.
Numerical results show that in the frequency range where
only Winter’s magnons are excited, both diagonals show spin
waves of similar amplitude. Therefore the enhancement (at-
tenuation) along one diagonal may be related to constructive
(destructive) interference with the corresponding spiral spin
waves along the given diagonals or any other standing pattern
in the triangular domains, as seen in Fig. 8(b) (both insets).

In order to clarify these findings, we used the analytical
dispersion relation from [36] for a Winter’s magnon propagat-
ing in a Bloch wall. In this case, any intrinsic anisotropy is
considered to be negligible. We also consider pinned bound-
ary conditions at the edges and the core and assumed an
effective internal field value of Heff = 0 A/m at the region
surrounding the core. Figure 4 shows a comparison between
the dispersion relation along one of the diagonals of the square
and that of a Winter’s magnon propagating along a 180◦ Bloch
wall, defined only by the interplay between exchange and
anisotropy. Excitation is applied parallel to one of the edges
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of the square. As it can be seen from the dispersion, there is
a significant mismatch at low k values between the analytical
solution (solid green line) for a 180◦ Bloch wall and numerical
results from our Landau pattern. We believe this could be due
to the fact that the domain wall in the Landau pattern is not
entirely a Bloch type wall. Based on the magnetization profile,
the region closer to the core shows a reduced out-of-plane
component and therefore, closer to a Neel wall configuration
(see inset of Fig. 4). In fact, if we consider the propagation of
waves in the Neel walls from Ref. [36], it can be seen that its
dispersion relation is growing faster than that of a Bloch wall.
As a result, there is a certain mixing of two regimes, with Neel
wall dispersion dominating at low k and Bloch wall dispersion
at higher k. A nonzero dipolar field transversal to the square’s
domain walls, due to the 90◦ turning as it is suggested in
Ref. [40], could also contribute to the mismatches at very low
k values.

We continue with the analysis of the effects of rounded
corners. This shape is closer in geometry to the real sample,
assuming imperfections at the sharp corners happened during
fabrication. In such a case, the wavefront becomes modified
when approaching the corners (see Fig. 3). The exchange
energy density is reduced and the shape anisotropy becomes
dominant, resulting in a confined wave with similar wave-
length to that of the spiral radiated into the triangular domains.
This shows an effective spatial down-chirping of the Winter’s
magnons wavelength caused by the geometry of the corners.
From Figs. 1 and 4, we see that the wavelength of Winter’s
modes is smaller than that of the spiral spin wave (kwm > kd ),
up to a certain frequency. At a frequency close to 19 GHz, it
can be deduced that the wavefront becomes a circular spiral,
since both wave vectors match (kwm = kd ≈ 0.1 rad/nm).
This implies that the spiral spin wave can also be modified
by just applying oscillating fields of higher frequencies. We
ran micromagnetic simulations at 20-GHz CW excitation (not
shown here) confirming the latter. Previous works have also
suggested to apply biasing fields to modify further the width
of the domain walls or ‘exchange channels’ for the Winter’s
magnons [40].

In the next section, we provide a simple physical expla-
nation of the arising of these characteristic waves in thicker
samples.

B. Balance between dipolar and exchange energies

In finite magnetic elements in absence of biasing fields, the
domain wall formation is mainly governed by their shape and
magnetic anisotropy, leading to specific magnetic configura-
tion. Depending on the thickness, either Bloch or Neel walls
are preferable as a result of a competition between magneto-
static and exchange energy. This can be intuitively understood
as follows: In thin films, out-of-plane rotation of magnetic
moments between domains is energetically expensive because
of high demagnetizing fields. When the thickness is increased
the demagnetizing field is reduced initially at the points of
higher magnetic gradients such as boundaries and magnetic
singularities, leading to increased out-of-plane components.
The same happens with a Neel wall, which at certain thickness
(typically around 50 nm for permalloy) starts transferring into
a Bloch wall.

FIG. 5. Schematic of a thick disk (t = 80 nm) with in-plane
(a) and out of plane (b) excitation showing counterclockwise pre-
cession of magnetic moments (blue arrows) around the effective
field (white arrows) at opposite positions referenced to the vortex
core (black dot). Dotted red arrow shows the sense of rotation due
to the exerted torque according to Eq. (3), where the out of plane
component of magnetization can be deduced to be out of phase by
π (in-phase) when an in-plane (out of plane) excitation is applied.
Vectors are magnified and not scaled for sake of clarity.

Now let us consider an in-plane excitation applied to
circular disks. To get a better view on the magnetostatic
relations behind these processes, we record the magnitude
of magnetization, dipolar and exchange fields across the di-
ameter of the disk. Here we take two case scenarios for a
permalloy nanodisk with thicknesses of 20 and 80 nm, where
the vortex configuration is reached after relaxation in both
situations. Our simulations show a more pronounced out of
plane turning in the thicker disks. Interestingly, the orientation
of magnetization vectors in thin and thick disks in the ground
state resembles the distribution for Neel and Bloch walls,
respectively. These differences on the initial distribution con-
tribute to a better excitation of spin waves at the vicinity of
the core in thicker disks. From Landau-Lifshitz-Gilbert (LLG)
equation [41],

dM(t )

dt
= −γ (M × Heff ) − λM × (M × Heff ), (3)

where γ is the electron gyromagnetic ratio and λ a phe-
nomenological damping term (λ = αγ /MS), applying an in-
plane excitation to magnetic moments in a thick disk near the
core, will enhance the exerted torque. Therefore spin waves
from the vortex core region are not that much excited in thin-
ner discs. These different configurations can also explain why
the vortex core diameter becomes larger in thicker samples.
In thick disks, since the out of plane rotation of magnetization
happens more gradually than in thin samples, the vortex core
becomes wider.

The characteristic wavefront of the spiral spin wave can
also be easily understood from LLG equation, which dictates
the counter-clockwise sense of Larmor precession of magne-
tization M around Heff (see Fig. 5). For two vectors in the
vicinity of the core, the excitation of applied in-plane field
will lead to out-of-phase precessions on opposite sides of the
core, thus leading to the spiral nature of the phase. In case
of the out-of-plane excitation, the clock-wise rotation leads to
in-phase precession of both vectors, which is then resulted in a
radial wave propagation. The asymmetric phase of precession
can also explain the existence of the gyrating “ dip,” reported
in other studies on thinner films [22].

Figure 6 shows the module of dipolar and exchange field
at the points surrounding the vortex core in its equilibrium
position (from numerical results not shown here, we define
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FIG. 6. Module of magnetostatic and exchange fields in x di-
rection across the center for circular disks [(a) and (b)] and square
elements [(c) and (d)] of 900-nm diameter and thicknesses 80 (solid
lines) and 20 nm (dashed lines). Insets show a reference for the
sectional cuts for the top and middle layer in thick and thin disks.
The x axis direction is chosen to be radial in the circular disks and
perpendicular to one edge in the square dot.

that region as |x − xvc| < 50 nm, with xvc = 450 nm) for
thick and thin circular disks [(a) and (b), respectively] and for
thick and thin square dots [(c) and (d)]. Due to circular (90◦)
symmetry in the disks (square dots) we only consider the x
direction (perpendicular to the dot edge, circular or square)
for the following analysis. Firstly, results are similar if not
identical for both shapes, so we can infer that similar dynam-
ical behavior will be found in both element shapes along that
direction. From Fig. 6, we can see that, in contrast to the thin
disks, dipolar field is drastically reduced in the bulk of the
thick disks. From these results, we can infer the following.
(1) A weaker demagnetizing field allows magnetic moments
to precess out-of-plane with more freedom than when being
closer to the surfaces (blue line). This also explains why the
spiral spin wave is more intense in the bulk of the thick disk,
due to the effective non influence of surface anisotropy and
pinning. (2) Dipolar field in the bulk of the thick disk is near
to zero. This implies that dipolar interaction with the surfaces
is minimal, while exchange interaction in the core region is
dominant allowing the exchange-dominated spiral spin waves
to occur. (3) Away from the core region and closer to the
surfaces, values of the exchange field for thin and thick disks
are similar and are very low in contrast to the core region. Via
exchange interactions, the spiral spin wave is originated in the
middle layers and gets coupled more easily to the neighboring
layers. This, also supports the uniformity in phase of the spiral
wave across the thickness, which is observed in simulations.
In summary, the significant weakening of the demagnetizing

FIG. 7. VNA-FMR results for circular disks (a) of thickness
80 nm. The FMR main mode can be spotted as well as other low-field
resonances related with the simulated spiral spin waves (insets in
(b)). Cut at zero applied field (dark blue line) compared with the
simulated spin wave absorption spectra of a centered vortex (light
blue line) (b).

field in thicker disks allows the core vicinity in the bulk of
the disk to act as a better source for exchange dominated spin
waves.

IV. VNA-FMR MEASUREMENTS

In the previous section, we showed that the spiral spin wave
emanating from the core is more intense for thicker nanodots,
always assuming a single vortex state configuration as starting
point. Hence, in thick samples, the footprint of these propa-
gating modes is more susceptible of being measured through
standard RF techniques.

A. Circular disks

Figure 7(a) shows the experimental absorption spectra and
the characteristic absorption peaks from the contribution of
the real part of microwave permeability in 80-nm-thick dots
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of 900-nm diameter. The main absorption peaks are present
at the frequencies where spiral spin waves can be efficiently
excited (these modes are numbered in Fig. 7 as I, II, and
III), which are in good agreement with our simulated spectra.
There are some slight discrepancies, of 4% at 7 GHz and
5% at 10 GHz, which can be due to imperfections at the
edges which normally lead to a smaller effective sample
size. Qualitatively, we observe that some resonances seem to
remain stable in a wide range of fields (up to 25–30 mT) and,
therefore, not much influenced by biasing field or dipolar-
dipolar interactions between disks and thus ensures that we
are observing characteristic modes from the single dots. This
follows up from numerical results, where the spiral wave
exists as long as the vortex core is not self-annihilated when
reaching the edge of the element. In Fig. 7(b), the amplitude of
the main peak at 8.7 GHz (mode II) corresponds to a standing
wave condition in the disk: From numerical simulation [see
Fig. 1(b)], we can see that the wavelength of the spiral spin
wave at that frequency is 125.6 nm. Considering one half
of the disk as a resonant Fabry-Perot cavity, the resonant
length (L) condition for a set of standing modes of order n
would be satisfied given: L = (1/2)nλc where λc is the spin
wave wavelength. From Fig. 3(c), for the given wavelength
at a frequency of 8.7 GHz and the length of the cavity, the
number of anti-nodes found is n = 7 which gives a resonant
length of L = 440 nm. This is in good agreement with the
radius of the disk (r = d/2 = 450 nm). It is worth to note
that a more realistic ’cavity length’ will be shorter due to
the width of the vortex core, therefore shorter than the radius
of the disk. Similarly, if we repeat for frequencies of 7 and
10 GHz (n = 5, mode I; and n = 9, mode III, respectively),
and assuming a resonant cavity length of L = 450 nm, we
obtain the same k vectors (or equivalent wavelengths) as in the
lower branch of the dispersion diagram from Fig. 1(b), 0.034
and 0.069 rad/nm, respectively. We also note the consecutive
odd values of the measured modes. These are the modes sus-
ceptible for activation since the even modes may not be seen
due to the symmetry of the signal in the CPW. Therefore we
can confidently correlate the measured modes above 6 GHz to
the spiral spin waves emitted from the core vicinity.

B. Squares

Analogously to Sec. IV A, Fig. 8 shows the experimental
results for squares and a comparison with numerical results.
From the measured absorption spectra, we can also observe a
large resonance peak at 8.8 GHz for a square of dimensions
(L) 900 nm by (t) 80 nm, which it is also in very good agree-
ment with our simulations. Its frequency position falls almost
exactly into that of a circular disk of equivalent dimensions
where, according to numerical results (see Fig. 2), we are
expecting propagation of an intense spiral spin wave. When
compared to the resonance frequency of a perfect square, it
is worth to note that there will be an expected frequency
mismatch mainly because of imperfections made during the
fabrication process, which include: more rounded corners and
a longer side length than expected. All these factors may
contribute to a frequency down shift which could explain the
mismatch and a closer matching to the resonance frequency
from the circular disk of 900-nm diameter.

FIG. 8. VNA-FMR results for square elements (a) of thickness
80 nm. The FMR main mode can be spotted as well as other low-
field resonances related with the simulated spiral spin waves and
Winter’s magnons [insets in (b)]. (a) shows the splitting of the main
resonance peak and white dashed line shows the analytical slope
for the downshifted peak. Cut at zero applied field (dark blue line)
is compared with the simulated spin wave absorption spectra of a
centered vortex (light blue line) (b).

It is interesting that, the resonance peak here is stronger
than those found in circular arrays. As previously discussed
in Sec. III, this could be related to the formation of 90◦
domain walls in the sample, characteristic of a Landau pattern,
and thus the stronger confinement of the spiral spin waves
propagating in them. Considering the spin wave’s wavelength
from the dispersion diagram in Fig. 4 (λd = 88.8 nm) and
check the resonance condition in a domain wall of length
ldw =√

2L/2 = 636 nm, we will obtain, for n = 14, a reso-
nant length of L = 622 nm which well agrees with the length
of half the diagonal of the square. As it happened in the
circular disks, a more realistic domain wall length will be
always less than half the diagonal of the square. If we repeat
the process for the next largest peak, at 6 GHz [n = 11 and
8, respectively, see Fig. 8(b)], we obtain an optimal resonant
lengths of L = 602 nm, which is also in good agreement
with half the length of the diagonal, with relative errors of
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5% (0.38λ). Again, considering a shorter effective length of
the domain wall due to the width of the vortex core, the
error is even smaller (0.18λ). Considering all this, the largest
measured resonance can be associated with the Winter’s prop-
agating modes coherently emitted with the spiral spin wave.
The lowest peaks are related with only lower resonances of
the Winter’s magnons in the domain walls, but not necessarily
matched with the spiral spin wave from the core, especially at
the lowest frequencies, where the spiral from the core is not
excited.

Other reports works have shown previously the splitting
of azimuthal spin waves in circular shapes when the vortex
core is displaced [25,27]. By applying a biasing field par-
allel to one side of the square, we can shorten or increase
the length of opposite domain walls, which splits the reso-
nance into a lower and upper frequency due to the broken
symmetry. If the domain walls are of the same length (this
is, at Bbias = 0 mT), the resonance peaks add up and can
also match with the absorption peak related to the spiral
spin wave radiated into the domains. This enhances the total
absorption at that specific frequency (see Fig. 8). We show
experimental results of this phenomena for the largest sample
(L = 900 nm). For this sample, we obtain an experimental
average value of the ratio � f /�B = −0.049 GHz/mT for
the peak that shifts down [see Fig. 8(a)]. To confirm this
analytically, we make the following approximation: If the
biasing field is small, i.e., Bbias � Bsat, we can consider the
variation of domain wall length approximately equal to the
vortex core displacement (�s), �ldw ≈ �s. We can also put
� f /�B as (� f /�s)(�s/�B). From numerical results on
thick square disks, we obtained a vortex displacement to
biasing field ratio of �s/�B = 8.59 nm/mT. Then,we can
obtain the relation � f /�s ≈ � f /�ldw from the dispersion
relation of discretized spin waves in a normally magnetized
film:

fn = f0 + fMλex

(
nπ

ldw

)2

. (4)

From numerical results, we obtain a vortex core half-
width of 50 nm, we can calculate an effective domain wall
length [ldw

′ = (L/
√

2) − 50 = 586 nm], n = 13 for a driving
frequency of f = 8.7 GHz [see Fig. 5(b)], we derive Eq. (4)
with respect to ldw and substitute the corresponding values,
obtaining � f /�ldw = −0.0052 GHz/nm. Finally, and under
all the previous approaches, we obtain an analytical value
for � f /�B = −0.045 GHz/mT, which is in good agreement
with the measured value, with a tolerable error of 9%. While
the agreement at low external fields is very good, mismatches
at larger biasing fields can be explained since the assumption
�ldw ≈ �s may no longer hold. By considering this similar
variation in the eigenfrequencies for this mode, both in the
experiment and the analytical approximation, we can confi-
dently say that the frequency down-shift due to applying larger
biasing fields is a consequence of the standing wave condition
of Winter’s magnons in the domain walls of square disks.

Figure 9 shows more results on arrays of square elements
with smaller length (L) at a fixed thickness (t = 80 nm):
L = 600 and 500 nm. It was confirmed through electron
microscopy (SEM) that the samples had the same separation
length, similar to the side length, to avoid dipolar coupling

FIG. 9. VNA-FMR results for squared thick disks of side lengths
900 (a), 600 (b), and 500 nm (c) applying different biasing fields.
Solid lines show a linear fit to experimental data and the error bars
are the steps (20 G = 2 mT) of the sweeping of the biasing field.
Dashed line is the analytical slope for the downshifted peak.

and magnetic interferences among them. It was found that,
although the resonance peak shifted to higher frequencies, we
also observed that the down shift dependence on the biasing
field of the main peak follows as well a similar if not identical
slope to the one analytically found for the largest square.
From numerical results, the number of nodes found along half
the diagonal of the 600 (500) nm square is 9 (8). Given the
wavelength of the Winter’s magnon excited at frequencies 9.1
(9.4) GHz (see Fig. 4), the optimal resonant length of the
domain wall was 399 (338) nm, which was again in good
agreement with the ideal length of half the diagonal of the
square, 424.3 (353) nm. This gives a tolerable error of 6%
(4%), i.e., an error of 0.28λ (0.18λ), which is even smaller if
we consider a more realistic shorter domain wall length due
to the width of the vortex core region.

For smaller sizes such as the 500-nm and 600-nm squares,
reduction of side length in steps of 100 nm (i.e., a reduction
of half the diagonal of 70.7 nm), is almost equivalent to
eliminating two nodes, i.e., one wavelength (88.8 nm), there-
fore it seems reasonable that the numbers of the modes are
close and consecutive. Assuming that imperfections during
fabrication happened regularly for every array and taking
all the above into account, we can confidently say that the
measured resonances, in thick samples, are associated with
the spiral wave emanating from the core vicinity in coherence
with Winter’s magnons propagating in domain walls.

V. SUMMARY

As a consequence of the thickness increase in magnetic
thin film elements, the competition between minimization of
exchange and dipolar energies dictates the different dynamics
and the configuration of the internal magnetic field in the sam-
ple. Similarly to the formation of different types of domain
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walls, we showed the rising of different spin wave modes near
the vortex core inhomogeneity and gave an explanation from
the perspective of a balance between magnetic energies and
the distribution of magnetization vectors.

In the bulk of a thick sample, intensity of dipolar fields is
reduced and exchange fields are enhanced in the vicinity of the
vortex core. This creates new magnetization inhomogeneities
which causes an outward propagating wave from the vortex
core region. If the excitation is applied in-plane, the spin
wave shows an out of phase wavefront on opposite sides of
the core and hence, conforming a spiral wavefront. In thin
disks, the arrangement of magnetic moments considerably
reduces the intensity of the generated spin waves. When the
pumping field is applied out of plane, a circular wavefront is
excited from the core vicinity. In this report, all these scenarios
have been explained on the basis of relations used in Landau-
Lifshitz equation of motion. Dispersion relations give more
insight of the landscape of the excitable modes in circular
disks.

In conclusion, we showed the possibility of enhancing
the amplitude of spiral spin waves in thick nanopatches,
improving their detection by means of standard RF techniques
such as VNA-FMR. Through this technique, we also show

experimental demonstration of absorption peaks related to
Winter’s magnons traveling along the diagonals of square
elements and how the absorption can be enhanced by also
exciting simultaneously the spiral spin wave from the core.

We hope these results help to better understand the sources
of spiral spin waves in confined structures and how to control
their dynamical properties. The core vicinity can act as a
quasipunctual source of spiral spin waves, among other shapes
of wavefronts, offering a new variety of potential applications
for magnetic nanostructures.

All data created during this research are openly available
in Ref. [42].
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