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We calculate shot-noise and the corresponding Fano factors in magnetic double-barrier tunnel
junctions. Two situations are analyzed; (i) the central metallic layer is nonmagnetic while the
external ones are ferromagnetic, and (ii) all the metallic layers are ferromagnetic. In the latter
case, the number of various magnetic configurations of the junctions is larger, which improves
functionality of such devices. The corresponding shot noise and Fano factor are shown to depend
on the magnetic configuration of the junctions. The effect of spin relaxation in the central layer is
also taken into account. The theoretical results are compared with experimental data on the shot
noise in Fe/MgO/Fe/MgO/Fe structures.
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I. INTRODUCTION

Shot noise is still attracting a considerable attention
due to its importance – not only for the theory and/or
experiment, but more importantly for applications. Un-
derstanding of the shot noise is crucial for an appropriate
description of fluctuating observables, which one usually
assumes as constants. Apart from the shot noise, which is
a manifestation of the discrete charge of electrons, there
are also other fluctuation-induced contributions to the
noise, e.g., due to a finite temperature (so-called ther-
mal noise) or due to a strong disorder in the system. It
turned out that measurement of the shot noise provides
an additional information on quantum and Coulomb cor-
relations, which is not accessible in the measurements of
average current.1–13

The noise measurements are especially important for
the physics of mesoscopic structures, where the current
fluctuations are expected to be strongly enhanced.1 The
shot noise in mesoscopic conductors has been studied the-
oretically more than two decades ago in the pioneer works
of Lesovik2 and Büttiker et al.3,4 Various aspects of the
shot noise and its manifestation in transport character-
istics of normal-metallic, semiconducting and supercon-
ducting structures have been reviewed by Blanter and
Büttiker.1

In mesoscopic structures which contain ferromagnetic
elements, not only charge but also spin fluctuations con-
tribute to the shot noise.5–7 This, in turn, may be impor-
tant for the characterization and functionality of spin-
tronic devices.14 It has been also shown experimentally
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that the Fano factor in a single-barrier magnetic tunnel
junction depends on magnetic configuration of the junc-
tion, and can be remarkably enhanced for the antiparal-
lel alignment of the electrodes’ magnetizations.15–18 Even
more possibilities have been found in double-barrier tun-
nel junctions with two ferromagnetic electrodes and one
ferromagnetic central layer, where one can distinguish
four magnetic configurations corresponding to different
alignments of the magnetic moments of all the three
magnetic layers.21 It has been also shown, that a sim-
ple model based on two well-separated spin channels for
electronic transport cannot properly describe the experi-
mental observations without taking into account spin-flip
transitions.21

In this paper we present in more details a theoretical
model of the shot noise in double-barrier magnetic tunnel
junctions. Such junctions consist of two tunnel barriers
which separate the central layer (in our case the central
layer can be either magnetic or nonmagnetic) from the
left and right magnetic electrodes. For simplicity, we as-
sume that magnetic moments of the electrodes and of
the central layer are collinear. Some results have already
been presented in Ref. 21. Here, we describe the calcula-
tions as well as the corresponding results in more details.
We also provide further experimental data to support the
theoretical results.

In Section 2 we consider shot noise in the case when
spin relaxation processes are absent. We consider there
separately the situations with nonnmagnetic and mag-
netic central layers. In Section 3, in turn, we take into
account the spin relaxation processes in the central mag-
netic layer. Some simple analytical formulas are derived
there in the limit of strong spin relaxation. In Section
4 we consider tunnel magnetoresistance, while in Section
5 we present some experimental data on the shot noise
in Fe/MgO/Fe/MgO/Fe double-barrier tunnel junctions.
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Summary and final conclusions are in Section 6.

II. SHOT NOISE IN THE ABSENCE OF SPIN
RELAXATION

If spin-flip transitions are absent (or can be neglected),
the two spin channels can be considered as fully sep-
arated. The shot noise corresponding to a single spin
channel, Sσ, can be then calculated from the relevant
expression for spinless particles,4

Sσ =
R2

1σS1σ +R2
2σS2σ

R2
σ

, (1)

where Riσ is the resistance of the i-th junction in the
spin-σ channel (this resistance generally depends on the
applied voltage, which is however not indicated here ex-
plicitly), Rσ is the total resistance of the spin-σ channel,
Rσ = R1σ +R2σ, and

Siσ = 2eV
Riσ

Rσ

e

h
TrTiσ(1− Tiσ) ≃

2eV

Rσ
. (2)

Here V is the external voltage applied to the system, and
the index i = 1, 2 refers to the two tunnel barriers (two
junctions); i = 1 for the left and i = 2 for the right
barrier, respectively. In Eq. (2) we assumed that the
transmission probability is small, Tiσ ≪ 1, for tunneling
through each of the two barriers. The shot noise S of
the double-junction structure includes contributions from
both spin channels, S = S↑ + S↓.
The average value of charge current driven by the volt-

age V is

I = V
R↑ +R↓

R↑R↓
. (3)

Thus, from Eqs. (1) to (3) one finds the Fano factor in
the absence of spin relaxation in the form

F ≡ S

2eI
=

(R2
1↑ +R2

2↑)R
3
↓ + (R2

1↓ +R2
2↓)R

3
↑

R2
↑R

2
↓ (R↑ +R↓)

. (4)

In the case of a symmetric structure, R1σ = R2σ = Rσ/2,
from Eq.(4) one finds F = 1/2. In asymmetric situa-
tions, however, the Fano factor is different from F = 1/2.
Equation (4) can be used to calculate the Fano factor in
a particular magnetic configuration of the junction, and
therefore its variation with changing magnetic state of
the system, as will be presented below.

A. Nonmagnetic central layer

Consider first a double junction with a nonmagnetic
central layer and two ferromagnetic external electrodes.
Let us begin with the parallel (P) configuration of the

magnetic moments of the the left (1) and right (2) elec-
trodes. For convenience we introduce the parameters α
and βi defined as,

α = R2↑/R1↑, βi = Ri↓/Ri↑. (5)

The parameter α takes into account asymmetry between
the left and right tunnel barriers, while the parameters βi

describe the spin asymmetry of both barrier resistances.
Note that the above definitions hold for the P configura-
tion.

Taking into account Eq. (5), one can write the Fano
factor in the P configuration as

FP =
(1 + α2)(β1 + β2α)

3 + (β2
1 + β2

2α
2)(1 + α)3

(1 + α)2(β1 + β2α)2(1 + α+ β1 + β2α)
. (6)

If we assume that the magnetic electrodes are made of the
same material, and the spin filtering properties of both
barriers are the same, β1 = β2,

22 then Eq.(6) becomes
reduced to

FP =
1 + α2

(1 + α)2
. (7)

In the antiparallel (AP) configuration we keep the def-
initions (5), characterizing each of the junctions as the
relevant resistance ratios in the P configuration. Thus,
assuming that the magnetization of the right electrode
(i = 2) is reversed, one should substitute in Eq. (4)
R2↑/R1↑ = αβ2, R1↓/R1↑ = β1, and R2↓/R2↑ = 1/β2.
The corresponding Fano factor is then given by the for-
mula

FAP =
(1 + α2β2

2)(α+ β1)
3 + (α2 + β2

1)(1 + αβ2)
3

(1 + αβ2)2(α+ β1)2(1 + α)(1 + β1)
. (8)

In the case of similar junctions with β1 = β2 = β, Eq. (8)
reduces to

FAP =
(1 + α2β2)(α+ β)3 + (α2 + β2)(1 + αβ)3

(1 + αβ)2(α+ β)2(1 + α)(1 + β)
. (9)

Let us introduce now the spin polarization pi as pi =
(Ri↓ − Ri↑)/(Ri↓ + Ri↑). When β1 = β2 = β, then also
p1 = p2 = p. The parameter β is then related to the
parameter p via the formula β = (1 + p)/(1 − p). The
Fano factor (9) can be then rewritten as

FAP =
1

2

[(1− p)2 + α2(1 + p)2][(1 + p) + α(1− p)]

(1 + α)[1− p+ α(1 + p)]2

+
1

2

[(1 + p)2 + α2(1− p)2][(1− p) + α(1 + p)]

(1 + α)[1 + p+ α(1− p)]2
.(10)

If apart from equal spin filtering parameters, the sys-
tem is additionally symmetric, i.e. α = 1, then FP = 1/2
in the parallel configuration (see Eq. (7)), and

FAP =
1

2
(1 + p2) (11)

in the antiparallel state (as follows from Eq. (10)). This
is in agreement with the calculations of Tserkovnyak et
al.7
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FIG. 1: (Color online) Fano factor in the P configuration for
β1 = 30 and different β2 in the absence of spin relaxation.
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FIG. 2: (Color online) Fano factor in the AP1 configuration
for β1 = 30 and different β2 in the absence of spin relaxation.

B. All-magnetic structures

Consider now a double-barrier junction with the cen-
tral layer and the external electrodes being ferromag-
netic. We keep the same parameters as before to describe
the system. These parameters are defined by Eq. (5), in
which all the resistances are taken in the state with all
magnetizations parallel (P state). The Fano factor in the
P configuration can be then easily calculated, and we find
it is given by Eq. (6).

Configuration with the magnetic moment of the cen-
tral layer antiparallel to the magnetic moments of the
outer ferromagnetic electrodes will be referred to in the
following as the AP1 configuration, (↑↓↑). In such a con-
figuration, the corresponding resistance Riσ (for i = 1, 2)
can be expressed by the resistances in the P configura-
tion as

√
Ri↑Ri↓. Taking this into account, one obtains
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FIG. 3: (Color online) Fano factor in the AP2 configuration
for β1 = 30 and different β2 in the absence of spin relaxation.

the corresponding Fano factor in the form

FAP1 =
β1 + β2α

2

(
√
β1 +

√
β2α)2

. (12)

In turn, in the configuration with one outer layer mag-
netized opposite to the other two layers (referred to as
the AP2 configuration, (↓↑↑)), the resistances R1σ of the
left junction are given by the corresponding resistances in
the parallel configuration as

√
R1↑R1↓. The correspond-

ing Fano factor is then equal

FAP2 =
(β1 + α2)(

√
β1 + β2α)

3 + (β1 + β2
2α

2)(
√
β1 + α)3

(
√
β1 + α)2(

√
β1 + β2α)2(2

√
β1 + α+ β2α)

. (13)

Note, that the Fano factor corresponding to the second
AP2 configuration, (↑↑↓), can be obtained from the above
formula by symmetry arguments. More specifically, the
corresponding Fano factor can be obtained from Eq.(13)
by the following replacements: β1 → β2, β2 → β1, and
α → 1/α.

In a symmetric case with α = 1 and β1 = β2 = β, the
above results reduce to

FP,AP1 = 1/2 (14)

in the P and AP1 configurations, and

FAP2 =
1 + β

(1 +
√
β)2

(15)

in the AP2 configuration.
The characteristic dependence of the Fano factor on

the basic parameters of the model is presented in Figs. 1
to 3 for the P, AP1 and AP2 configurations, respectively.
From Fig. 1 follows that the Fano factor in the P state is
only weakly sensitive to the difference in the parameters
β of the two barriers, i.e. on the spin filtering proper-
ties of the barriers. Apart from this, the Fano factor is
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minimum, F ≃ 1/2, in an almost symmetric situation
(α ≃ 1). When the asymmetry increases, the Fano fac-
tor changes and tends to F = 1 for highly asymmetric
junctions.
The situation is different in the AP1 state (see Fig. 2),

where the Fano factor is strongly sensitive to the differ-
ence in spin filtering parameters of the two barriers. This
is because the asymmetry effectively changes with the dif-
ference in the parameters β, and this in turn results in a
shift in the magnitude of α at which the Fano factor is
minimum. The minimum value of the Fano factor is still
F = 1/2. The Fano factor in the AP2 state is shown in
Fig. 3. Its dependence on the parameter α is now quali-
tatively different. First, the minimum value of F is larger
than 0.5. Second, the point where the Fano factor has
minimum is shifted away from α = 1. Third, there is an
additional weak local minimum in the dependence of the
Fano factor on α.

III. SHOT NOISE IN THE PRESENCE OF SPIN
RELAXATION

Now we consider an all-magnetic structure and take
into account spin relaxation in the central ferromagnetic
layer. Spin relaxation affects the magnitude of spin fluc-
tuations, while the charge fluctuations are not influenced
by the spin-flip processes. The spin-σ polarized current
through the 1st (left) and 2nd (right) tunnel barriers is
given by the following formulas

I1σ = G1σ(µL − µσ)/e, (16)

I2σ = G2σ(µσ − µR)/e, (17)

where Giσ is the conductance of the ith junction in the
σ-spin channel; µL and µR are the chemical potentials
in the left and right electrodes, respectively, while µσ

is the spin dependent chemical potential in the central
layer. Here we assume that the electrons in the right and
left electrodes are in quasi-equilibrium, whereas µσ can
fluctuate according to the fluctuating number of spin-σ
electrons in the central layer. The total current through
the ith barrier is the sum of partial currents in the spin
channels, Ii = Ii↑ + Ii↓.
The current fluctuations in the spin-σ channel, ∆Iiσ,

consist of the contribution due to Langevin-noise, δIiσ,
and due to fluctuations in the number of spin-σ electrons
in the central layer,

∆Iiσ = δIiσ +
∂Ii
∂µσ

δµσ . (18)

In the following we assume a short dwell time, which
means that the charge current is conserved at each mo-
ment t, so that

∆I1 = ∆I2, (19)

where ∆Ii is the current fluctuation in the i-th junction.
Using Eqs. (16) to (18), we can rewrite the condition (19)

in the following form

(G1↑ +G2↑) δµ↑ + (G1↓ +G2↓) δµ↓

= e (δI1↑ + δI1↓ − δI2↑ − δI2↓) . (20)

We will describe the spin relaxation process as a non-
conservation of spin current transmitted through the cen-
tral layer. Since the spin current through the i-junction
is defined as Ji = (Ii↑ − Ii↓)/e, one can write

∆I1↑ −∆I1↓ −∆I2↑ +∆I2↓ =
e δs

τs
, (21)

where τs is the spin relaxation time, δs = ρ (µ↑ − µ↓)Ωd
is the nonequilibrium variation of the total spin in the
central layer of thickness d and area Ω, and ρ is the elec-
tron density of states. Taking into account Eqs. (16) to
(18) we can rewrite Eq. (21) as

(G1↑ +G2↑ + g) δµ↑ − (G1↓ +G2↓ + g) δµ↓

= e (δI1↑ − δI1↓ − δI2↑ + δI2↓) , (22)

where we introduced the parameter g defined as g =
e2ρΩd/τs. Upon calculating δµ↑,↓ from Eqs. (20) and
(22), and substituting them into Eq. (18), one arrives at
the following relation between the total current fluctua-
tion and its Langevin part,

∆I1 = δI1↑

(
1 +

G1↑(2G1↓ + 2G2↓ + g) +G1↓g

D

)
+δI1↓

(
1 +

G1↓(2G1↑ + 2G2↑ + g) +G1↑g

D

)
−δI2↑

G1↑(2G1↓ + 2G2↓ + g) +G1↓g

D

−δI2↓
G1↓(2G1↑ + 2G2↑ + g) +G1↑g

D
, (23)

where D is defined as

D = −(G1↑ +G2↑)(G1↓ +G2↓ + g)

−(G1↓ +G2↓)(G1↑ +G2↑ + g). (24)

The shot noise results from averaging of the square of
∆I(1). As a result, one obtains

S = (δI1↑)2
(
1 +

G1↑(2G1↓ + 2G2↓ + g) +G1↓g

D

)2

+(δI1↓)2
(
1 +

G1↓(2G1↑ + 2G2↑ + g) +G1↑g

D

)2

+(δI2↑)2
[G1↑(2G1↓ + 2G2↓ + g) +G1↓g]

2

D2

+(δI2↓)2
[G1↓(2G1↑ + 2G2↑ + g) +G1↑g]

2

D2
, (25)

where for the Langevin noise (δI1,2;↑,↓)2 we should sub-
stitute

(δI1↑,↓)2 = (δI2↑,↓)2 =
2eV

R1↑,↓ +R2↑,↓
. (26)
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FIG. 4: (Color online) Fano factor in the P configuration
for β1 = 30 and β2 as indicated in the limit of strong spin
relaxation.
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FIG. 5: (Color online) Fano factor in the AP1 configuration
for β1 = 30 and β2 as indicated in the limit of strong spin
relaxation.

The Fano factor is then determined as

F =
R↑R↓S

2eV (R↑ +R↓)
, (27)

where Rσ = R1σ +R2σ, and S is given by Eq. (25).

In the absence of spin relaxation, the parameter g van-
ishes, g = 0. After simple algebra one recovers then the
previously found result given by Eq. (4). In numerical
calculations based on Eqs. (25) to (27), it is convenient
to use the dimensionless parameter ḡ = d/vF τs to char-
acterize the spin relaxation rate.
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FIG. 6: (Color online) Fano factor in the AP2 configuration
for β1 = 30 and β2 as indicated in the limit of strong spin
relaxation.

A. Strong spin relaxation

In the limiting case of g → ∞ (strong spin relaxation),
the accumulated spin fluctuations vanish, δs = 0, which
corresponds to δµ↑ = δµ↓. Then, one finds the following
expression for the Fano factor,

F =
R2

2↑R
2
2↓(R1↑ +R1↓)

2 +R2
1↑R

2
1↓(R2↑ +R2↓)

2

[R1↑R1↓(R2↑ +R2↓) +R2↑R2↓(R1↑ +R1↓)]2
. (28)

The above formula can be used to calculate the Fano
factor in various magnetic configurations, similarly as in
the preceding section. Thus, in the P configuration we
find

FP =
α2β2

2(1 + β1)
2 + β2

1(1 + β2)
2

[β1(1 + β2) + αβ2(1 + β1)]2
. (29)

For the AP1 configuration (↑↓↑), in turn, one finds

FAP1 =
α2β1β

2
2 + β2

1β2

(β1

√
β2 + αβ2

√
β1)2

. (30)

Finally, Eq.(28) leads to the following Fano factor in the
AP2 configuration (↓↑↑):

FAP2 =
4α2β1β

2
2 + β2

1(1 + β2)
2

[β1(1 + β2) + 2αβ2

√
β1]2

. (31)

As before, the Fano factor corresponding to the second
AP2 configuration, (↑↑↓), can be obtained from the above
formula by the following replacements: β1 → β2, β2 →
β1, and α → 1/α.

The dependence of the Fano factor on the junction
parameters and magnetic configuration in the limit of
strong spin relaxation is shown in Figs. 4 to 6. The re-
sults shown in Fig. 4 and Fig. 5 are qualitatively similar
to the corresponding ones in the absence of spin relax-
ation processes, see Fig. 1 and Fig. 2, respectively. In
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turn, the results presented in Fig. 6 differ qualitatively
from those shown in Fig. 3. The key difference is the
absence of the second shallow minimum in the depen-
dence of the Fano factor on the asymmetry parameter
α. Moreover, the absolute minimum value of F is now
smaller than in Fig. 3 and is equal to 1/2, as in the other
two configurations.

IV. TMR OF THE DOUBLE-BARRIER
STRUCTURE

The model of shot noise described above contains sev-
eral parameters characterizing the double-barrier junc-
tions. These parameters can be evaluated from fitting
to experimental observations. However, to get reliable
values of these parameters from fitting, one should fit
not only the shot noise, but also the resistance or tun-
nel magnetoresistance (TMR). Therefore, in this section
we briefly describe the TMR, which can be defined as
the relative difference in the total junction resistance in
the antiparallel and parallel states. Formally, we use the
following definition:

TMR =
IP − IAP

IAP
=

(
RAP

RP
− 1

)
, (32)

where IP (IAP ) is the total current in the parallel (an-
tiparallel) configuration, while RP (RAP ) is the corre-
sponding total resistance.
The analysis of transport properties carried out in pre-

ceding section allows to determine TMR in all magnetic
states of the double-barrier junction. Thus, in the case
of AP1 configuration we obtain

TMRAP1 =
(
√
β1 + α

√
β2)(1 + α+ β1 + αβ2)

2(1 + α)(β1 + αβ2)
− 1 . (33)

In turn, TMR corresponding to the AP2 configuration is
given by the formula

TMRAP2 = −1 +
1

(1 + α)(β1 + αβ2)

×{(
√
β1 + α)(

√
β1 + αβ2)(1 + α+ β1 + αβ2)}. (34)

Variation of TMR in the AP1 configuration with the
asymmetry parameter α is shown in Fig. 7 for different
values of the barrier spin filtering parameters. Similar
behavior can be expected for the second antiparallel con-
figuration, AP2. By numerical fitting both TMR and
shot noise, one can more precisely determine the param-
eters used to describe the structure. To have the most
reliable junction parameters, one should fit TMR in all
magnetic configurations.

V. EXPERIMENTAL RESULTS

The theoretical results have been compared with the
experimental data obtained on Fe/MgO/Fe/MgO/Fe
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FIG. 7: (Color online) TMR as a function of α for β1 = 30
and different values of β2.

double barrier magnetic tunnel junctions19. The junc-
tions’ growth, characterization and the experimental
techniques have been already described elsewhere19–21.
Here we go beyond the experimental data presented in
Ref. 21 by demonstrating the control and theoretical un-
derstanding of the shot noise and tunnel magnetoresis-
tance in all the four different magnetic states of a double-
barrier magnetic tunnel junction. These four magnetic
states are the parallel (P) configuration (↑↑↑), antipar-
allel configuration with magnetic moment of the central
layer opposite to the moments of the external electrodes
(↑↓↑), denoted as AP1 configuration, and two AP2 con-
figurations, (↓↑↑) and (↑↑↓), referred to in the following
as AP21 and AP22 magnetic states.

As an example, Fig. 8 shows the dependence of the
resistance and shot noise on the magnetic state of a
sample described by α < 1. The measurements have
been performed at a constant current, corresponding to
V = 200 mV in the P state. The sample had the follow-
ing structure (numbers in brackets represent thickness in
nm): MgO//MgO(10)/Cr(42)/Co(10)/Fe1(5)/MgO(3)
/Fe2(5)/MgO(2.7)/Fe3(10)/Co(30)/Au(10). Note that
the barriers had slightly different thicknesses. Four dis-
tinct values of the resistance and shot noise have been ob-
served, which correspond to the different magnetic con-
figurations described above. Shot noise was measured
over the voltage range ±1 V, and the average Fano val-
ues for each magnetic state were estimated from the bias
range between 0.2 and 0.5 V, since the influence of quan-
tum well states (QWSs) was observed above 0.5V at low
temperatures (see Ref. 21).

The fitting of the experimental data to the theoretical
results has been done numerically by finding the α and g
parameters which give a set of (β1, β2) parameters where
the theoretical Fano factor agrees with the experimental
data (with a tolerance of around 3 − 4%) for all four
states. In order to choose just one pair of (β1, β2) values,
we fitted the theoretical and experimental TMR values.
From this, we found all the parameters needed to describe
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FIG. 8: (Color online) Shot noise and tunnel magnetoresis-
tance at a fixed current during a magnetic field sweep at
T = 0.3 K.
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FIG. 9: (Color online) Comparison of the theory (lines) and
experimental results (points) measured at T = 60 K, for ḡ =
100, α = 0.08, β1 = 3.5, β2 = 28.3.

the sample.
Figure 9 shows the fit of the theory to the shot noise

measurements in all four states for the sample from Fig.
8. The measurements were done at T = 60 K, since the
influence of QWSs gradually vanishes at high tempera-
tures. It can be seen that the theory predicts quite well
the Fano values for the parameters ḡ = 100, α = 0.08,
β1 = 3.5, β2 = 28.3. These fitting parameters are in
agreement with the observed properties of the junction.
The parameter α = 0.08 comes from different thicknesses

of the barriers (and also their different spin filtering prop-
erties). On the other hand, β1 = 3.5 and β2 = 28.3 also
make sense since β1 corresponds to the thinner barrier,
and generally thinner barriers have weaker spin filtering
properties than the thicker ones. Finally, we note that
the spin relaxation rate parameter, ḡ = d/vF τs, with
d = 5 nm being the thickness of the central layer and the
Fermi velocity vF of 104 m/s, indicates a short spin relax-
ation time τs ≃ 10−14 s, which could be correlated with
the fact that epitaxial MgO barriers of these thicknesses
have relatively high density of oblique defects21.

VI. SUMMARY

We have analyzed the shot noise in double-barrier mag-
netic tunnel junctions. The central metallic layer of the
junctions was either nonmagnetic or ferromagnetic. We
have derived some simple analytical formula for the Fano
factor in different collinear magnetic configurations of the
system in the limit of strong spin relaxation as well as in
the absence of spin relaxation. The tunnel junctions have
been described by a couple of parameters, especially by
the asymmetry parameter taking into account the dif-
ference in the two barriers, and also by two spin filter-
ing parameters (one for each barrier). These parameters
have been evaluated from fitting to experimental data on
tunnel magnetoresistance and shot noise (Fano factor).

The experimental data show that the Fano factor can
be controlled by magnetic configuration of the system,
and can take four different values corresponding to four
different magnetic states. Theoretical evaluation of these
factors agrees rather well with the experimental observa-
tions.
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